investigation, mechanical design and construction

LAYER 3

WORKFLOW

- electrical tests —> done (Jan. Mar. 2021)
- imaging diagnostic
 - visual inspection of Layer 3 radiographies and CT scan —> done (Apr. May)
 - > virtual model comparison w.r.t. technical design --> in progress
 - > CT scan on KLOE-2 CGEM detector —> done (May Jun.)
- > Static FEM simulations (L1, L2 and L3) -> done (Jun. Aug.)
- FEM simulation validation by means of experimental "drop test" —> planned (this week)
- Mechanical test of spacing grid effectiveness —> to be addressed (end of Sep. Oct.)
- New 3D model of layer 3 design (Nov.)
- Executive drawings (Dec. 2021)

LAYER 3 DAMAGE

Images from L3 CT scan

- L3 is composed of two coaxial cylinders connected at the edges by permaglass rings
- The Carbon Fiber structure has no damage and it's at nominal geometry
- The deformations appear only on the GEM foils

DISPLACEMENT FORM NOMINAL GEOMETRY

STATIC GEM MODEL

- The CGEM is described as a cylinder
 - diameter 364 mm
 - > total length 940 mm
 - active area length 847 mm
 - The active area is modeled using parameter extracted from mechanical tests and published at LNF-09/12(IR)
 - > The glue is neglected

Component	Mass [Kg]	Thikness [µm]	Equivalent density[kg/m3]	Linear El. Modulus [GPa]	Poisson Coefficient
Active Area GEM-3	0,1273	50 (K) + 10 (Cu)	2291	4,8	0,335
Kapton Area GEM-3	7,2*10-3	50 (K)	1420	3,1	0,34

BUCKLING ANALYSIS: L3-GEM3

BUCKLING ANALYSIS: 2 VS 3 OVERLAPS

- Each GEM electrode is made of 2 GEM foils glued together
- The overlaps between foils are one of the most delicate part of the detector
 - The glueing must be performed by hand, very precisely
 - No sign of deterioration of the gluing found so far
- The overlaps carry most of the transverse tension within the GEM foils
 - Defects are sometime associated with overlaps
- Increasing the number of overlaps from 2 to 3 does not improve the static limit of the structure

DROP TEST

- FEM buckling analysis showed a limit point of ~2.4g for the layer 3 GEM geometry
- Depending on the surface, such an acceleration can be reached even with small impacts
- > Simulation needs to be validated against data
- A "drop test" will be conducted later this week at LNF with a mockup of a layer 3 GEM cylinder
- The mockup has been assembled from spare GEMs and 3D-printed flanges (see next slide)
- > One side of the mockup will be constrained onto a table; while the other side will be dropped from different heights
- > Up to five accelerometers will be attached to the supporting structure and to the GEM foil to measure the deceleration due to the impact

SPACING GRID

- > KLOE-2 used a peek grid to keep the distance between the GEM foils on the outermost layers (L3 and L4)
- The grid have been shown to be effective in containing a large defects due to assembly accidents on KLOE-2 layer 3
- No buckling effects on KLOE-2 layer 4

- Dynamic simulation too complicated and would require some validation with data
- A mechanical test could be the best way to assess the its efficacy
 - Discussion in progress

WHAT ABOUT L1 AND L2

> Preliminary buckling analysis on L1 and L2 showed higher limit points (about double for L2 and four times for L1)

> KLOE-2 CT scan seems to confirm that at small radius the design geometry is quite stable

The two BESIII layers are working properly in Beijing (except when the humidity is very high)

PREPARING FOR CGEM CONSTRUCTION AT IHEP

CLEAN ROOM REQUIREMENTS

- We are working to identify a place for the layer 3 construction @ IHEP with the help of Jianchun Wang, Qun Ouyang, Hai-Bo Li and Mingyi Dong
- About 72 m² are currently used for CGEM construction in the Frascati clean room
 - > Test
 - Single electrodes gluing
 - Vertical Assembly
- The clean room is of Class 1000
- Non-standard height due to the vertical inserting machine —> 300 cm

UPGRADE THE CLEAN ROOM CURRENTLY USED FOR CGEM TEST

Advantages

- The ceiling is very high
- > We know the place very well
- > It's available
- Disadvantages
 - Area is about 40 m² (vs 72 m² required) —> need to proceed in multiple steps: test, glue, assemble
 - Need to relocate the CGEM and MDC detectors
 - Need to be upgraded to Class 1000 —> big investment

Critical path

No task on the critical path -> due to the travel restrictions some activities must be monitored

- Layer 3 design to be completed by the end of 2021
- Logistics for construction at IHEP —> ~6 months
 - Setup clean room (discussion on that later)
 - Ship/build assembly infrastructures
- Assembly of the detector —> ~6 months
- L1 and L2 maintenance —> up to 12 months

the travel ban is the main source of uncertainty

THANKS!