

I MAGNETI SUPERCONDUTTORI PER HI-LUMI E PER FCC

STEFANIA FARINON

A NOME DEI GRUPPI INFN DI SUPERCONDUTTIVITÀ DI GENOVA E MILANO

Il team di collaborazione Sezione di Genova – LASA Milano

- Le sezioni di Milano e Genova dell'INFN hanno un'esperienza di quasi 40 anni nella progettazione di magneti superconduttori.
- Collaborano strettamente solo dai primi anni 2000, con la progettazione, costruzione e test di un dipolo curvo pulsato per il SIS300 del GSI (sviluppato insieme anche al G.C. di Salerno).
- nel 2014 la partecipazione congiunta alla call di CN5 MAGIX ha permesso all'INFN di contribuire significativamente ad Hi-Lumi, l'upgrade ad alta luminosità di LHC.
- Più recentemente, sulla scia dei risultati del progetto Europeo EuroCircol, collaboriamo al programma High Field Magnet, per lo sviluppo dei dipoli ad alto campo in Nb₃Sn per FCC-hh.
- 🏿 🖜 🖜 Altri programmi su cui siamo impegnati:
 - SIG Superconducting Ion Gantry
 - HITRIplus Heavy Ion Therapy Research Integration
 - I.FAST Innovation Fostering in Accelerator Science and Technology

Milano LASA

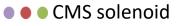
- Lucio Rossi
- Massimo Sorbi
- Marco Statera
- Marco Prioli
- Ernesto De Matteis
- Samuele Mariotto
- Riccardo Valente (PhD)
- Stefano Sorti (AdR)
- Magnus Dam (Bors.)

Sezione di Genova

- Stefania Farinon
- Riccardo Musenich
- Andrea Bersani
- Barbara Caiffi
- Alessandra Pampaloni
- Filippo Levi (PhD)
- Sergio Burioli (PhD)
- Andrea Gagno (PhD)
- Michela Bracco (AdR)

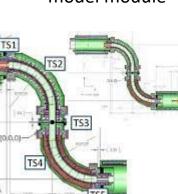
Collaborazione col CERN

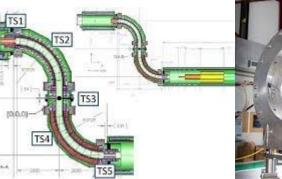
UNO SGUARDO AL PASSATO


Principali magneti SC progettati e realizzati

● ● 1st 15 m long LHC dipole

• ciclotrone LNS


BaBar solenoid

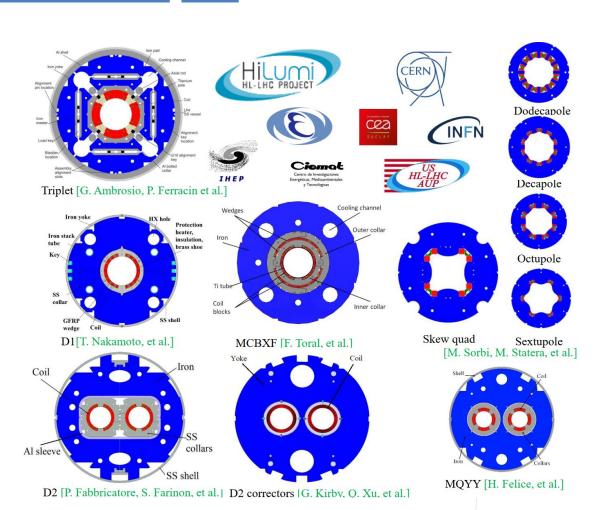

BABAR

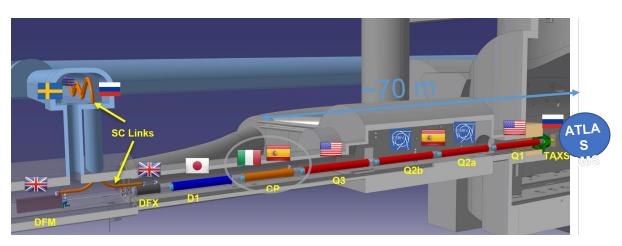
SIS 300 GSI dipole

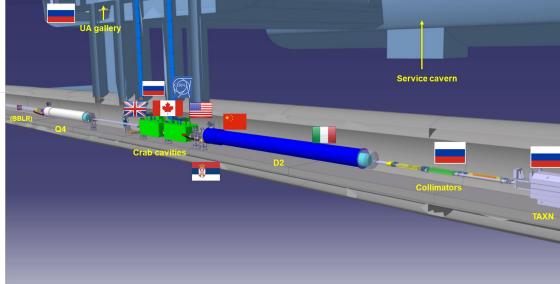
Left: cross-section of the Transport Solenoid showing

Stefania Farinon

Giornata Acceleratori, 7-8 Aprile, Milano


IL PRESENTE: HI-LUMI





Hi-Lumi Magnet Zoo

Contributo INFN ai magneti di Hi-Lumi

Nel 2014 la CN5 approva la Call MAGIX, per lo sviluppo di tecnologie superconduttive per applicazioni ai futuri magneti per acceleratori.

MAGIX			
WP1	CORRAL (Milano LASA)	Design, construction and test of the five prototypes of the corrector magnets for the HL interaction regions of HiLUMI	
WP2	PADS (Genova)	2D & 3D engineering design of the D2 magnets	
WP3	SCOW-2G (Napoli)	Development of HTS coil for application to detectors and accelerators	
WP4	SAFFO (Ge-Mi-Na)	Low-loss SC development for application to AC magnets	

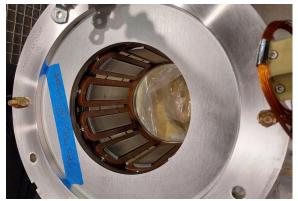
L'impegno INFN viene supportato dal CERN con l'accordo KE2291/TE/HL-LHC per "R&D Activities Relating to High-Luminosity LHC (HL-LHC) Superconducting Magnets".

valore collaborazione MAGIX

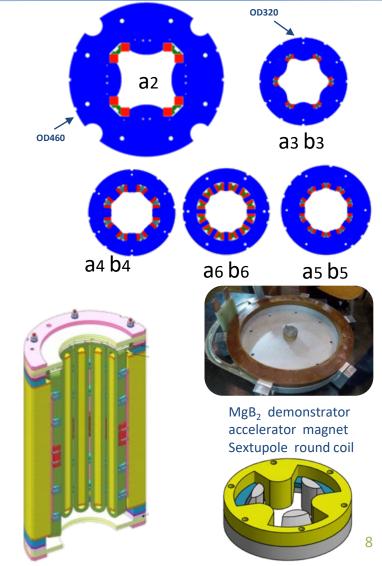
valore finanziario totale (inclusi costi del personale)	1.30 M€
FTE/y	9
Contributo CERN	0.53 M€

Giornata Acceleratori, 7-8 Aprile, Milano

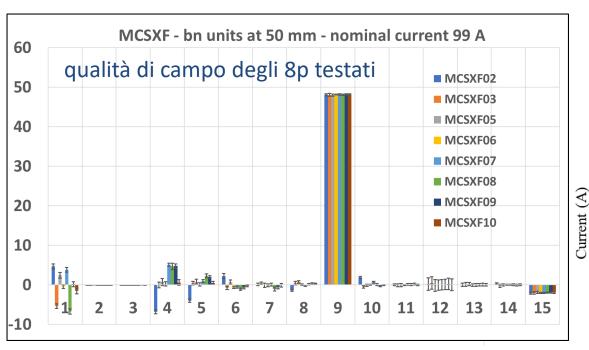
Stefania Farinon

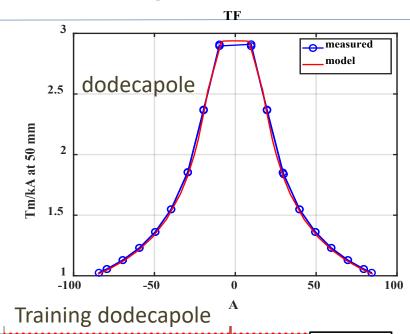


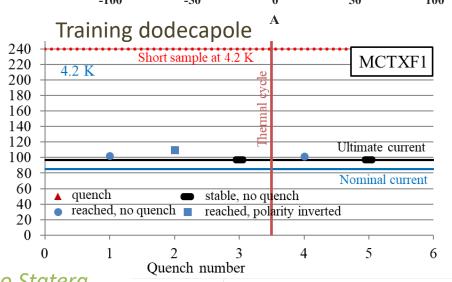
I correttori di ordine superiore per Hi-Lumi (INFN-LASA)


- I correttori di ordine superiore compensano gli errori di qualità del campo dei nuovi quadrupoli di focalizzazione di HiLumi.
- Saranno i primi magneti superferrici ad essere installati in LHC.
- Sono di 5 tipologie diverse, per ognuna delle quali è stato progettato, costruito e testato un prototipo.
- La serie di 54 magneti è stata affidata all'azienda Saes Rial Vacuum

	valore collaborazione HO correctors	protos (MAGIX)	serie
	valore finanziario totale (inclusi costi del personale)	0.91 M€	5.86 M€
	FTE/y	5	8
Gio	Contributo totale CERN di cui di materiali	0.45 M€	2.88 M€ 0.10 M€




Courtesy of Marco Statera

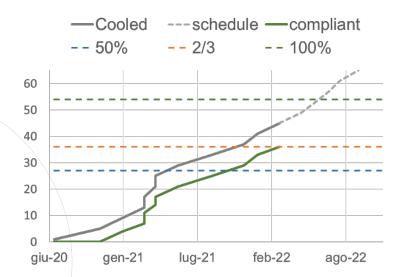


I correttori di ordine superiore: test dei magneti

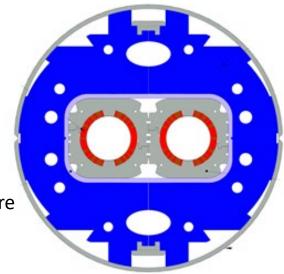
- ● I magneti vengono tutti testati al LASA:
 - 4 magneti raffreddati per ogni test (2 cicli termici)
 - alimentati individualmente
 - caratterizzazione completa: training, quench memory, qualità del campo e funzione di trasferimento

I correttori di ordine superiore: stato dei test

- 54 magneti prodotti
- • 2/3 dei magneti testati
- ad oggi 30 magneti consegnati al CERN
- consegna al CERN di tutti i magneti prevista per Sett. 2022



Jobs | ♥ | Q

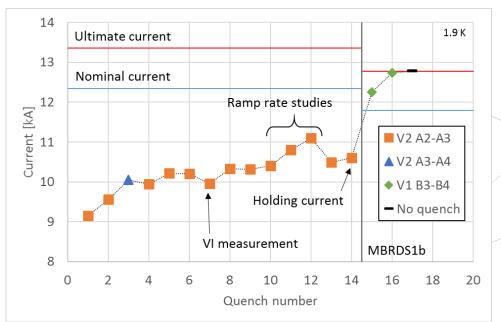


Il dipolo superconduttore D2 per Hi-Lumi (INFN-GE)

- i dipoli D2 in LHC servono per portare i fasci alla collisione
- I dipoli D2 di Hi-Lumi hanno maggiore apertura (105 mm) e campo magnetico (4.5 T) rispetto a quelli presenti in LHC
- • Le principali caratteristiche sono:
 - ● 2 aperture di diametro 105 mm, 8010 mm di lunghezza fisica
 - • campo magnetico orientato nella stessa direzione nelle due aperture
 - ● 35 T·m di campo integrato a 7 TeV
- • L'agreement CERN/INFN include:
 - ● 1 modello corto (MBRDS1) testato al CERN in Agosto 2020
 - ● 1 prototipe (MBRDP1) consegnato al CERN il 21/10/2021
 - 4 magneti + 2 spare per la serie,
 la cui costruzione è prevista a partire da Maggio 2022
- I magneti sono realizzati dall'azienda ASG Superconductors

Main characteristics of the D2 dipole			
Bore magnetic field	4.5 T		
Magnetic length	7.78 m		
Peak field	5.26 T		
Operating current	12.330 kA		
Stored energy	2.26 MJ		
Aperture	105 mm		
Operating temperature	1.9 K		
Loadline fraction	67.5%		
Multipole variation due to iron saturation	<10 units		

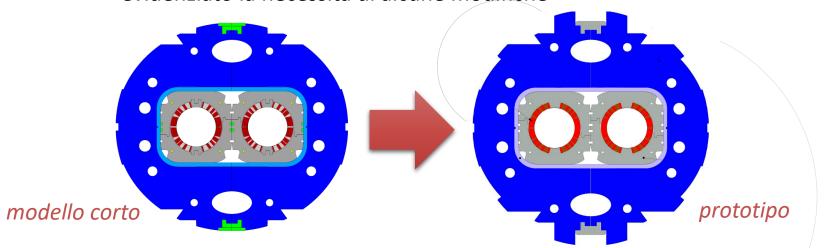
valore collaborazione D2	modello corto + proto	serie
valore finanziario totale (inclusi costi del personale)	5.85 M€	8.0 M€
FTE/y	4	4
Contributo totale CERN di cui di materiali	2.60 M€ 0.77 M€	4.0 M€ 2.0 M€

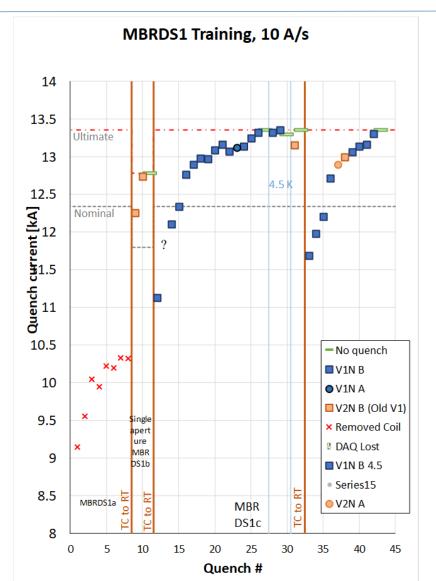


Il dipolo superconduttore D2: il modello corto

- il modello corto (1.6 m) è stato consegnato al CERN il 17/1/2019
- il test ha rivelato criticità in una apertura, compatibili con la parziale rottura di diversi fili
- l'apertura problematica è stata disconnessa e il test dell'apertura residua ha dato esito positivo

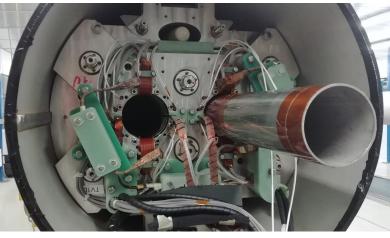
ispezionando l'apertura si sono trovati 20 strand su 36 gravemente danneggiati



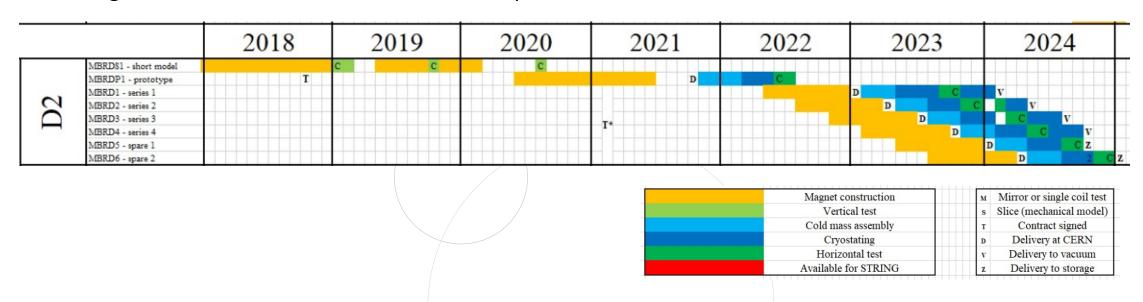


Il dipolo superconduttore D2: il modello corto

- la bobina danneggiata è stata sostituita e un nuovo test eseguito in Agosto 2020
- • il test ha fornito informazioni fondamentali:
 - ● corrente ultimate raggiunta, anche a 4.5 K
 - perdita di memoria in una bobina di un'apertura (che aveva subito 4 collaraggi), con conseguente retraining dopo il ciclo termico
 - • misure di saturazione magnetica in linea con i modelli
 - • quench heaters validati
- complessivamente, il modello corto ha validato il design, anche se ha evidenziato la necessità di alcune modifiche


Il dipolo superconduttore D2: il prototipo

- il prototipo è stato consegnato al CERN il 21/10/2021
- si sta procedendo con l'assemblaggio della massa fredda che include anche i correttori di orbita (per una lunghezza di circa 14 m)
- ● il test è previsto per il mese di Luglio

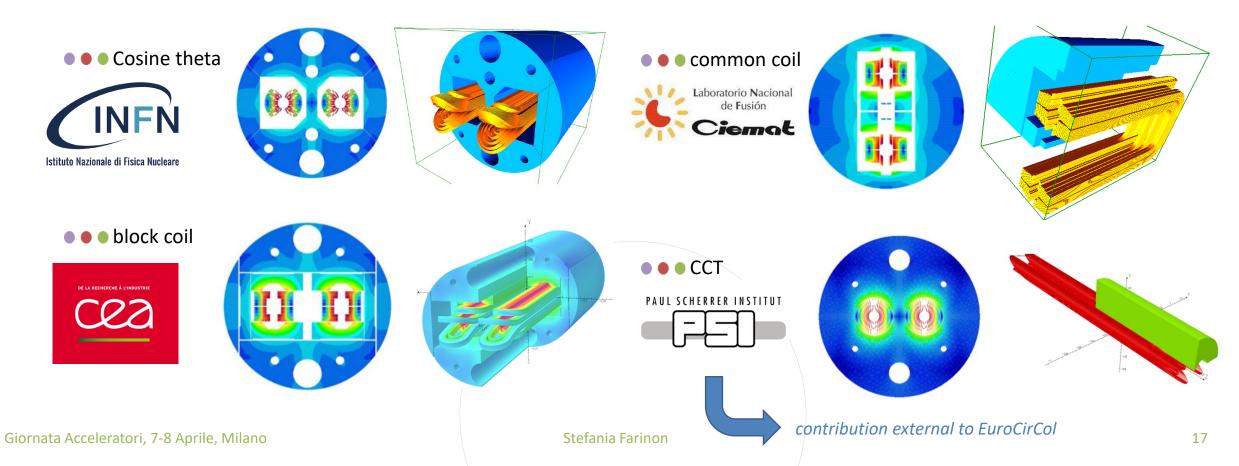


Il dipolo superconduttore D2: la serie

- La costruzione della serie partirà in Maggio/Giugno 2022 (attualmente stiamo riscontrando difficoltà con la fornitura di alcuni componenti essenziali) e sarà completata a metà del 2024. D2 non è sul cammino critico di HL-LHC.
- Sono previsti 6 magneti, 4 da installare nel tunnel e 2 spare
- Considerato che tra il prototipo e la serie siamo dovuti intervenire con alcune ulteriori modifiche, il primo magnete della serie è considerato come una pre-serie

Giornata Acceleratori, 7-8 Aprile, Milano Stefania Farinon

IL PRESENTE: FALCOND



Il Progetto Europeo EuroCirCol (2014-2019)

- • Il progetto EuroCirCol era incentrato sulle questioni chiave di progettazione che determinano la fattibilità di un collisore di adroni da 100 TeV in un tunnel lungo 100 km
- ● Il WP5, dedicato ai dipoli ad alto campo, prevedeva l'esplorazione di diverse opzioni di progettazione:

Conceptual Design Report

- L'opzione INFN è stata scelta come baseline per il CDR pubblicato nel 2019...
- ... anche se le altre configurazioni non potevano essere definitivamente scartate solo su base progettuale...

Eur. Phys. J. Special Topics **228**, 755–1107 (2019) © The Author(s) 2019 https://doi.org/10.1140/epjst/e2019-900087-0

THE EUROPEAN
PHYSICAL JOURNA
SPECIAL TOPICS

Regular Article

FCC-hh: The Hadron Collider

Future Circular Collider Conceptual Design Report Volume 3

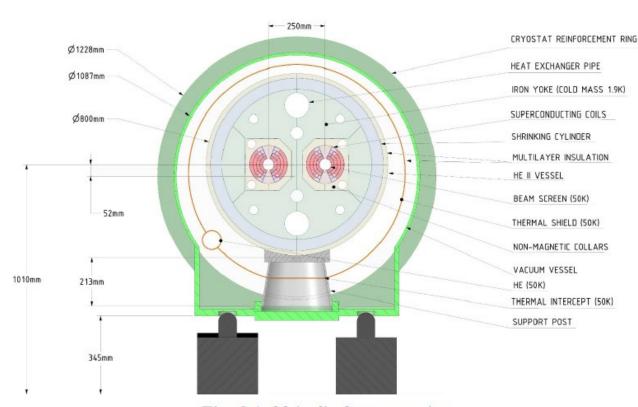
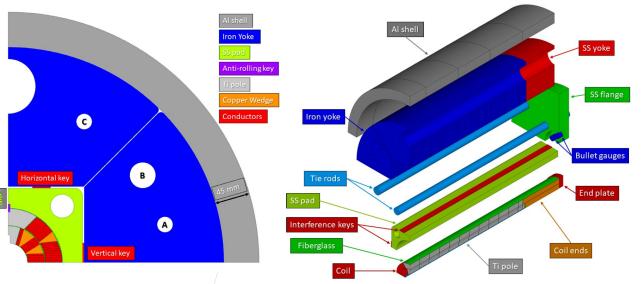


Fig. 3.1. Main dipole cross-section.

La nascita del progetto FalconD

Future Accelerator post-LHC Cos-theta Optimised Nb₃Sn Dipole

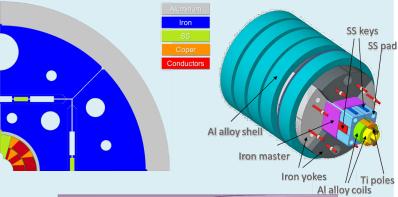

- ... è quindi emersa l'esigenza di costruire un dimostratore
- nel Sett. 2018 è stato sottoscritto un agreement CERN-INFN per la costruzione di un modello di dipolo ad alto campo nell'ambito degli studi di FCC
- cui è seguita una gara internazionale, vinta da ASG
 Superconductors
- ASG è responsabile della costruzione delle bobine superconduttrici

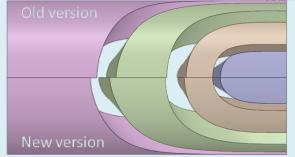
la struttura meccanica sarà assemblata nei laboratori LASA

	ia strattara miceeamea st	a. a a 3 3		•
B (T)				
	0 10 20 30 40 50 60 70	Hoti (T)	0 20 40 60 80 100 120 140 160 180 200 220 240 260 286	275 mm
Giornati	a Acceleratori, 7-8 Aprile, iviliano		0 20 40 00 00 100 120 140 100 100 200 220 240 200 200	ŧ

valore collaborazione FalconD		
valore finanziario totale (inclusi costi del personale)	4.3 M€	
FTE/y	4	
Contributo totale CERN di cui di materiali	2.75 M€ 1.25 M€	

Main characteristics of the FalconD dipole		
Bore magnetic field	12 T	
Magnetic length	1.5 m	
Peak field	12.53 T	
Operating current	20.930 kA	
Stored energy	0.54 MJ/m	
Aperture	50 mm	
Operating temperature	1.9 K	
Loadline fraction	76%	
Field quality (geo/sat.)	<15 units	

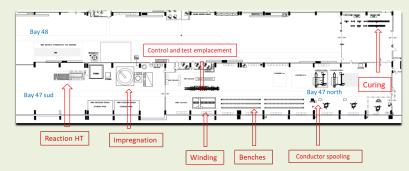




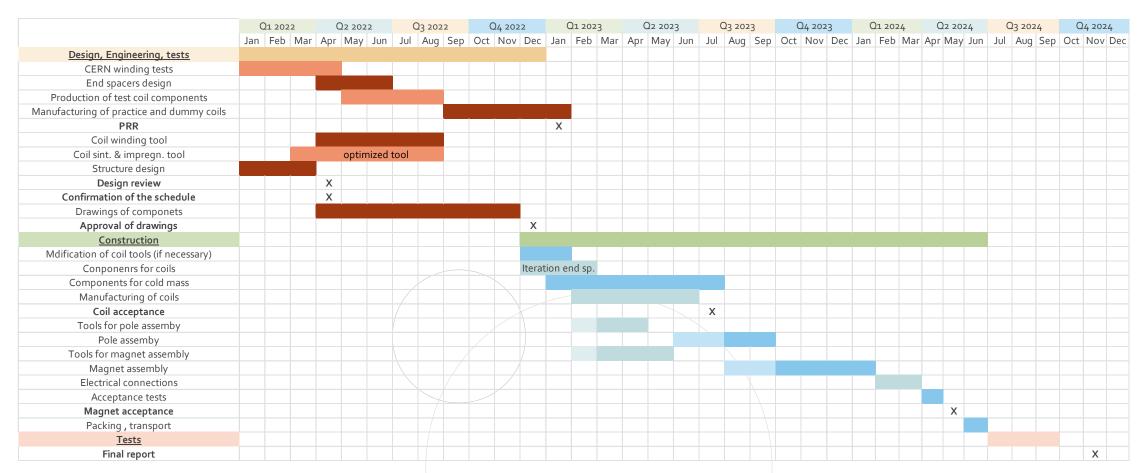
FalconD: attività in corso

attività in Lintro Nazionalo di Fisica Nucleare : finalizzazione del design elettromagnetico e meccanico, costruzione di un mock-up





attività in Superconductors: preparazione delle aree e delle le attrezzature



FalconD: la programmazione

● ● ● il programma INFN/CERN prevede la costruzione e il test del dipole FalconD entro la fine del 2024

IL PROSSIMO FUTURO

23

HFM (High Field Magnets)

- tecnologia Nb₃Sn (FCC-hh baseline)
 - ● completamento del dipolo FalconD
 - supporto al programma HFM (CERN) per lo sviluppo di dipoli da 12 T cosiddetti «robusti» (ossia progettati per ridurre i rischi, aumentare l'efficienza e diminuire i costi)
 - estensione a Falcon2D: assemblaggio in configurazione di apertura doppia delle bobine di FalconD
 - supporto al programma HFM (CERN) per lo studio del limite delle performance dei dipoli in Nb₃Sn

 Sfruttare la tecnologia Nb₃Sn fino al suo limite superiore, sia in termini di prestazioni massime (obiettivo di campo massimo 16 T) che di scala (produzione in grandi serie)

- • tecnologia HTS
 - vorremmo lanciare un programma in collaborazione col CERN per
 - sviluppo di HTS da nastri a conduttori per magneti
 - sviluppo di un dipolo per 1 m di lunghezza, 10 T-150 mm come test facility cryogen-free

 Fornire una prova di principio per la tecnologia dei magneti HTS possibilmente oltre la portata del Nb₃Sn, con un obiettivo finale di campo di dipolo di 20 T, e una qualità di campo sufficiente per applicazione agli acceleratori

per queste attività stiamo discutendo un accordo di circa 3-5 M€ INFN e 3-5 M€ CERN per 5 anni a partire dal 2024

GRAZIE PER L'ATTENZIONE

