

Accelerators at INFN-LNS

S.Gammino

LNS past/present facilities

- Nuclear structure and dynamics
- Nuclear astrophysics
- Plasma physics
- Medical physics and biophysics

_

KM3NeT second phase is a research infrastructure housing the next generation neutrino telescopes. KM3NeT will open a new window on our Universe, but also contribute to the research of the properties of the elusive neutrino particles.

Astro-particle physics

Environmental physics

Applications to cultural heritage

 Neutrino Energy from MeV to PeV

 Image: Super Novae explosion MeV
 Image: Super Novae explosion MeV to Oscillations GeV

 Neutrino Oscillations MeV
 Image: Super Novae explosion MeV to Oscillations GeV

 ARCA + ORCA
 ORCA

... and the (near) future

LNS upgrade of their facilities to keep the pace of research in nuclear physics at the international level. After the upgrade, the intensity and variety of beams will increase and new experimental setups will be made available to Users in 2023-24.

tituto Nazionale di Fisica Nucleare LABORATORI NAZIONALI DEL SUD

The POTLNS project aims at upgrading the LNS CS and beam lines to increase the

the intensity by about 2 orders of magnitude for ion beams with mass number <= 40 and energies between 15 and 70 MeV/amu.

Extraction by stripping

Applications:

In flight production of RIBs @ FRAISE High intensity beams for the study of $0v2\beta$ decay (NMEs)

2020 Acceleration test of ions of interest for NUMEN/FRAISE

¹⁸O⁶⁺ @ 20 MeV ¹⁸O⁶⁺ @ 25 MeV ¹⁸O⁶⁺ @ 45 MeV ¹⁸O⁶⁺ @ 60 MeV

⁴⁰Ar¹³⁺ @ 45MeV 40Ar13+ @ 60MeV **PANDORA** aims at asmas for Astrophysics building an innovative Nuclear Decay magnetic plasma trap, Observation a Radiation for Archaeometr for interdisciplinary and fundamental physics research, especially the study of β -decays under astrophysical

approaches for the treatment of

matter interaction. Accelerated

breast carcinoma

Intensities 109 - 1012

KM3NeT is a research infrastructure housing the next generation neutrino telescopes. KM3NeT will open a new window on our Universe. but also contribute to the research of the properties of the elusive neutrino particles.

NESTOR

New beams of ⁴He⁻ and ³He⁻. H⁻. ¹⁶⁻¹⁸O⁻. ¹⁴N⁻ ... (hopefully ²⁰Ne...)

Laboratori Nazionali del Sud: Layout

LNS Accelerators

Superconducting Cyclotron

430 BTU circa per year delivered for each accelerator (excluding beam time preparation)

35 - 40 experiments per year, including the proton therapy sessions

Beam time lost for failures:

- *Tandem: < 2%*
- Cyclotron: < 4%

Luigi Celona – PAC on line meeting - July 16th, 2021

Superconducting Cyclotron yearly capability		
Total hours scheduled for operation	(hrs)	5830
Total hours scheduled for user-op	(hrs)	3945
Total hours realised for user-op	(hrs)	3850
Total down-time for user-op	(hrs)	100
Users Efficiency	(%)	98
Number of user groups	(n)	31
Total hours scheduled for Physics	(hrs)	1790
Total hours realised for Physics	(hrs)	1790
Total down-time for Physics	(hrs)	0
Efficiency for Physics	(%)	100
Number of physics groups	(n)	6
Tandem yearly capability		
Total hours scheduled for operation	(hrs)	4050
Total hours scheduled for user-op	(hrs)	2690
Total hours realised for user-op	(hrs)	2690
Total down-time for user-op	(hrs)	0
Users Efficiency	(%)	100
Number of user groups	(n)	11
Total hours scheduled for Physics	(hrs)	2150
Total hours realised for Physics	(hrs)	2150
Total down-time for Physics	(hrs)	0
Efficiency for Physics	(%)	100
Number of physics groups	(n)	7

The Tandem Van De Graaff

Operating since 1983

Maximum High Voltage \approx 13.5MV Pelletron charging system HV stability \approx 10⁻⁴ SF₆ insulating gas

Beams: from protons to gold (not noble gases, YET...)

stituto Nazionale di Fisica Nucleare LABORATORI NAZIONALI DEL SUD

Upgrade TANDEM automation and instrumentation

instrumentation and renovation of installations

Replacement of obsolete

software platform Vacuum **Power converters** SF6 controls with redundancy of temperature and pressure gauges, alarm leak **Terminal Voltage**

Implementation of a new

Spectrometry of accelerated species

Visual Diagnostics

• ${}^{1}H, {}^{2}H$

- ⁶Li. ⁷Li
- ⁹Be ¹⁰Be
- ¹⁰**B**. ¹¹**B**
- $^{12}C, ^{13}C$
- 14N
- ¹⁶**O**, ¹⁷**O**, ¹⁸**O**
- 19F
- ²³Na
- 24 Mg, 25 Mg
- 27AI

- ²⁸Si. ²⁹Si
- ^{32}S , ^{34}S
- ³⁵Cl. ³⁷Cl
- ⁴⁰Ca •
- ⁵⁸Ni. ⁶⁰Ni
- ⁶³Cu, ⁶⁵Cu
- ⁷⁰Ge
- ⁷⁹Br
- ⁹³Nb
- ¹¹⁶Sn, ¹²⁰Sn
- 127
- ¹⁹⁷Au

Noble gases development in progress

The software platform will be integrated into the existing one already realized and yet used for the cyclotron

450 kV Tandem injection

Since November'22 extraordinary maintenance has been planned for all the subsystems present on the platform

In the early summer it is planned to restart with the full commissioning of the Nestor source for production of noble gas to provide He⁻ beam by charge exchange Li vapours **under study**²²Ne

Noble Elements Source for acceleraTORs (NESTOR)

Current of positive beams $[\mu A]$ (p=4 e^{-4} mbar)

Immagine e profilo del fascio (35 W, 6 GHz e $4EE^{-4}$ mbar)

Luigi Celona – PAC on line meeting - July 16th, 2021

								=
			Fre	equenza	RF [GH	z]		7
		5.85	5.90	5.95	6.00	6.05	6.15	
	15	105	176	190	183	126	152	
	20	235	245	250	284	140	198	Y
otenza RF [W]	25	305	313	307	348	188	212	
	30	382	379	344	394	344	182	
	35	453	400	385	435	426		

NESTOR has been installed on the 450 kV platform for the production of noble gases negative ions for the Tandem Accelerator

The Superconducting Cyclotron

Operating since 1994

1 1

Three sector compact accelerator

Energy range: 10 – 80 MeV/A

Beams: from protons to lead

- E_{MAX} ~ 80 AMeV for lighter ions
- E_{MAX} ~ 25 AMeV for heavier ions (i.e. Au³⁶⁺)
- Bending limit K_{bend} =800 Focusing limit K_{foc}=200
- Pole radius: 90 cm
- Min-Max field: 2.2 4.8 T
- RF range: 15-48 MHz
- Axial Injection
- Two ECR ion sources: CAESAR and SERSE
- High Reliability

Cyclotron Beams Menu

AX	E (AMeV)	AX
H_2^+	62,80	40 C a
H_3^+	30,35,45	
$^{2}\mathbf{D}^{+}$	35,62,80	58Ni
⁴ He	25,62,80	.45
He-H	10, 21	62,64N
⁹ Be	45	68,70 7
¹¹ B	55	⁷⁴ Ge
¹² C	23,62,80	78,86K
¹³ C	45,55	⁸⁴ Kr
14N	62,80	⁹³ Nh
¹⁶ O	21,25,55,62,80	107 Δσ
¹⁸ O	15,55	¹¹² Sn
¹⁹ F	35,40,50	116 Sn
²⁰ Ne	20,40,45,62	¹²⁴ Sn
²⁴ Mg	50	129 Xe
²⁷ Al	40	197 A II
³⁶ Ar	16,38	208Ph
⁴⁰ Ar	15,20,40	10

a	E (AMeV) 10,25,40,45 10,45
	16,23,25,30,35,40
i	25.35
n	40
	40
r	10
	10,15,20,25
	15,17,23,30,38
	40
	15.5,35,43.5
	23,30,38
	15,25,30,35
	20,21,23,35
	10,15,20,21,23
	10

	Tandem	Ciclotrone Superconduttore
1975		Presentazione idea concettuale di F.Resmini alla Cyclotron Conference di Zurich
1976	Nascita LNS	
1982-83	Installazione Tandem da 13 MV	Progetto (Sezione Milano)
1984	SOUP (start of user programme)	
1988	Progetto upgrade 16MV	Cool-down magnete
1990	Operativo a 16 MV, con trasmissione incrementata	Trasferimento ai LNS
1992		Criogenia operativa
1994		Fascio accelerato
1995		SOUP (start of user programme)
1995-99		Iniezione radiale
1998-99		Installazione sorgenti ECR e linea assiale
2000		Iniezione assiale
2006		EXCYT commissioning
2013	Pelletron update	
1984- 2020	Users' programme	
1995- 2020		Users' programme
23/06/20	Stop of users' programme	Stop of users' programme
Lug- Sett.2020		Beam tests per POTLNS

Superconducting Cyclotron upgrade within POTLNS

The project scientific goal is to increase the CS beam luminosity by two order of magnitude, in order to carry out new experiments investigating rare phenomena (e.g.: NUMEN, dealing with neutrinoless double beta decay nuclear elements matrix and all the activities related to FRAISE, the new fragment separator for the production of radioactive beams by fragmentation).

Additional reason: cryostat has been in operation for 30 years, and risks of failure were high.

Obsolescence of the infrastructures was also an issue. In fact, in addition to such action promoted by the Italian Ministry of Research, some funds have been made available by INFN budget in order to replace or improve ancillary equipments of the SC and of the beamlines.

General PBS adapted to the PON submission scheme

dashboard PON tenders status

State aggiud

aggiua

lato in

aggiud aggiud

aggiud aggiud

aggiud aggiud aggiud aggiu

aggiua

aggiudicata

aggiudicata

PIR01 00005 112798

PIR01 00005 113854

Impianto acqua (PBS 1402)

Monitor radiazioni (PBS 1403)

mar-21

mar-21

lug-21

dic-21

	Codice univoco del bene	Nome breve del bene	Costo ammissibile	data prevista di stipula contratto	data prevista di consegna
ata 🛛	PIR01_00005_3108	Magnete superconduttore (PBS 1101)	5.026.400,00 €	nov-19	lug-22
ata	PIR01_00005_18667	Liner (PBS 1102)	793.000,00€	gen-21	gen-22
eparazione	PIR01_00005_18750	DEE - coni (PBS 1103)	85.400,00€	set-21	gen-22
eparazione	PIR01_00005_85857	Canali magnetici (PBS 1104)	122.000,00€		
eparazione	PIR01_00005_85970	Movimentazioni (PBS 1105)	115.800,00€	mar-21	dic-21
ata 🛛	PIR01_00005_86175	Stripper (PBS 1106)	1.067.500,00 €	lug-20	apr-22
ata 🛛	PIR01_00005_86337	Linea di estrazione (PBS 1107)	1.117.600,00€	lug-20	nov-21
ata 🛛	PIR01_00005_102540	Convertitori TC (PBS 1108)	816.200,00 €	gen-21	set-21
ata 🛛	PIR01_00005_102731	Linea FRAISE (PBS 1201)	3.219.200,00€	lug-20	nov-21
ata 🛛	PIR01_00005_102893	Schermature FRAISE (PBS 1202)	666.000,00€	giu-21	feb-22
ata 🛛	PIR01_00005_103026	Linea MAGNEX (PBS 1301)	2.026.000,00 €	lug-20	nov-21
ata 🛛	PIR01_00005_103223	Schermature MAGNEX (PBS 1302)	1.127.300,00€	giu-21	feb-22
ata 🛛	PIR01_00005_103274	Convertitori MAGNEX (PBS 1303)	519.000,00€	gen-21	mag-22
eparazione	PIR01_00005_103830	Pozzo di spegnimento (PBS 1304)	21.900,00€		
ata	PIR01_00005_103933	Diagnostica (PBS 1401)	735.400,00€	ago-21	mag-22

PON tenders status Elenco beni approvati

1.472.600,00€

421.000,00€

A significant upgrade of LNS has been funded in 2019 by a PON-FESR for boosting research infrastructures, having its own goals, time-schedule and deadlines.

POTLNS POTLNS CONTRACTUAL START POTLNS END DATE **END DATE with EXTENSION** JUN '19 FEB '22 **FEB '23** +4 months If the 60% of the POTLNS budget will be accounted by feb '22 +12 months **CS TESTING CS DISMOUNTING** Extension due to COVID19 June Dec Dec June Dec June Sept Mar Sept '19 '19 '20 '20 '21 '21 '22 '23 '23 Sept Mar Sept Mar Sept Mar Dec June '19 **'**20 '20 '21 '21 '22 **'**22 '23 **STOP** SC Magnet CS **Experimental** shutdown deployment activity

Istituto Nazionale di Fisica Nucleare LABORATORI NAZIONALI DEL SUD

Cyclotron Upgrade

To increase the beam luminosity the Superconductive main magnets with the cryostat and the liner of the CS, the beamlines, the shielding, the power supplies and cooling plant of the LNS shall be rebuilt.

A number of ancillaries, the iron of the cyclotron are modified, mechanical matching is an issue.

Areas involved in the project

POTLNS Master Schedule

Dismounting underground tunnels and preliminary construction works -> building of basement for new shielding walls stituto Nazionale di Fisica Nuclea LABORATORI NAZIONALI DEL SUE AISHA **Working Areas** MAGNEX **KM3NET** 0 Nuova distribuzio LS-20 ne LS - 20 Sala CICLOPE LS - 0 LS - 40 DISTR 1 Sala MEDEA Vecchia distribuzione ESS TANDEM -0

PREINJECTOR

The infrastructural tasks have begun

MAGNEX shielding removed and placement of «sarcofago»

Same for MEDEA, to be removed afterwards

And completed

Infrastructural sub projects were about on time, not a bottle neck for the main project

FRAISE radiation shielding installation

101/2020 obliged to reconsider some tasks, though the radioprotection regulations are not significantly different, as they were already a challenge...

And completed

MAGNEX radiation shielding installation

And completed

The same for other infrastructural sub project

And completed

POTLNS Master Schedule

POTLNS Master Schedule

0

Istituto Nazionale di Fisica Nucleare LABORATORI NAZIONALI DEL SUD

New spectrometer for projectile fragmentation

Foreseen intensities

FRAISE **Output Slits** is ZFC Degrader 🬖 DQ13 DQ120 Slits DQ7 DQ6 DO Z RONDA DQ4 DQ3 Production target D02 F

BEAM	primary beam / energy (AMeV)	thick wedge	YIELD new separator (kHz)	purity %
14Be	180/55	0	2,6	2
14Be	180/55	1000	2,2	70
13N	160/40	600	1230	54
140	160/40	600	807	36
18Ne	20Ne/60	0	16700	16
18Ne	20Ne/60	1000	3120	47
17F	20Ne/60	1000	3300	49
34Si	365/40	500	980	81
385	40Ar/40	300	1840	66
34Ar	36Ar/50	0	2800	4
34Ar	36Ar/50	500	426	12
68Ni	70Zn/40	200	490	50

High Intensity operation with the upgraded CS and HCI production REQUIRE SERSE or a similar class ECRIS.

Refurbishment of some subsystems carried out in previous years (controls, gas box, insulated rack), **<u>BUT</u>** serious cryogenic problem arose during last operations and a few weeks ago identified.

Cost-benefit analysis under way to decide how to proceed

The source, although totally unsuitable to support the high intensities desired with the new CS, <u>can continue to provide</u> <u>the less critical beams in the first operational years</u>.

New ECRIS for the upgraded CS- Option 1: SC-AISHa

The AISHa ion source has been expressly conceived and realized for actual and future hadrontherapy facility (e.g.:HITRI+). It has a strong limitation on a radial field (1.28T instead of 1.55T of SERSE) affecting HCI production.

However the permanent magnet hexapole may be replaced by a superconducting structure with a minor changes on the solenoid coils for axial confinement (may be decreased to 3). Increase of extraction voltage is also mandatory.

Radial field	1.9 T
Axial field	3.5 T - 0.5 T - 2.2 T
Operating frequencies	24 GHz – 18 GHz
Operating power	5 + 5 kW (max)
Extraction voltage	60 kV (max)
Chamber diameter / length	Ø 130 mm / 600 mm
LHe	Free
Warm bore diameter	140 mm
Source weight	2100 kg

New ECRIS for the upgraded CS- Option 2: GyroSERSE

Up to 45 GHz **Operating frequency** Maximum rf power 20 kW **4.5** T B_{max} (injection side) \mathbf{B}_{\min} 0.5 T B_{max} (extraction side) 3.5 T B_{rad} (at chamber wall) 2.7 T Cryostat length 1700 mm Hexapole inner diameter 216 mm Length of the chamber 650 mm ♦ chamber 180 mm Extraction voltage 60 kV

Coil	Current [A]	B _z on axis [T]	Br at R=90mm [T]	B at Coil [T]	Margin to Quench [%]
Sextupole	286.54	-	2.69	6.79	19
Extraction Solenoid	104.71	3.2	-	6.0	29.2
Injection Solenoid	104.66	4.49	-	6.6	23.5
Middle Solenoid	112.49	0.492	-	4.0	49.3

Ion source analysis beam line

Two options have been studied for the SC-AISHA or MS-ECRIS analysis beamline :

a 90° dipole magnet with a bending radius of 1200 mm (mass resolution better than 100). The dipole gap is ±80 mm. The entrance and exit field boundaries of the dipole are inclined by 26° in order to be double focussing. The needed solenoid strength is 0.3 T. Similar results may be achieved decreasing the bending radius to 700 mm. In this case the needed solenoid strength is 0.62 T.

b) a quadrupole quadruplet to obtain a relatively narrow beam and a smaller 90° dipole magnet (ρ =800 mm without any inclined field boundaries and higher order correctors) with a mass resolving power better than 120. The advantage of this system is, that it provides astigmatic focusing. The length of the magnetic quadrupoles is 200mm, the radius is 50mm and their separation is 50mm.

A total space charge of 1 mA has been considered.

New axial beam injection line: ECRISs – CS matching optimization

Designed in late 90's to permit selection and transport of low currents of highly charged ions.

Review needed to adapt it for the transport with a good efficiency of high currents.

Insertion of a Low Energy Chopper as mitigation device for MPS and beam intensity tuning.

Renewal of the two axial bunchers

Modification in beam diagnostics

Refurbishment vacuum system and controls

The new Control System Architecture

Beam Auto Tuning with AI tools

CHANGE

Centro di Massa X: 280 Risoluzione immagine: 768x576 Sigma X: 23 Centro di Massa Y: 298 Sigma Y: 50

ULISSE is a new compact proton source devoted to all protontheraphy CATANA sessions and to all experiments envisaging protons, H2+ or deutons.

Frequency: 5.85-6.425 GHz Power: 40W Amplifier type: Solid State Plasma Chamber length: 70 mm Plasma Chamber radius: 70 mm Magnetic field: 0.2 T (around)

ULISSE

Cyclotron

I-LUCE: INFN Laser indUced aCcEleration facility

0.2 PW, < 30 fs, > 1Hz Ti:Sapphire, 800 nm laser system

lon accelerations and applications

CINFN ei

ELIMED

OUEEN'S UNIVERSITY BELFAST

- Commissioning will start in September 2020 (INFN-LNS and Queen's University resp.)
- Laser-driven proton (up to 300 MeV) ion (up to 70 AMeV) beam lines for interdisciplinary applications
- First world open Users' beam line for studies with laseraccelerated ion beams

Long list of INFN funded projects: ECLISSE since 1997 in collaboration with CAS Prague and IPPLM Warsaw, then PLATONE, PLAIA, LIANA, LILIA, ELIMED, L3IA, LPA2 with ELI Beamlines

ESS high intensity proton source

2011 Strat of the design at LNS
2015 Start of the construction at LNS
25/05/2017 ESS visit for requirement verification
12/09/2017 ESS visit for requirement verification
17/11/2017 End of the commissioning at LNS
01/02/2018 Delivered and assembled in Lund

ESS high intensity proton source

PS-ESS was fully commissioned at LNS and performance were validated by ESS personnel

Requirement	Value	Measurement done for configurations that satisfy the ESS stability requirements	Comments
Total beam current	>90 mA	40 - 140 mA	1
Nominal proton beam current	74 mA	40 - 105 mA	1
Proton beam current range	67-74 mA	40 - 105 mA	1
Proton fraction	>75%	Up to 85%	1
Pulse length	6 ms	6 ms	1
Pulse flat top	3 ms	3 ms	1
Flat top stability	±2 %	< ±2 % up to 1.5%	1
Pulse to pulse stability	±3.5 %	< ±3.5 % up to 3%	J
Repetition rate	14 Hz	14 Hz	1
Beam energy	75±5 keV	75 keV	1
Energy adjustment	±0.01 keV	±0.01 keV	1
Transverse emittance (99%)	1.8 pi.mm.mrad	1.06 pi.mm.mrad @ 82 mA	J
Beam divergence (99%)	<80 mrad	50 mrad @ 82 mA	1
Start-up after source maintenance	32 hours	32 hours	1

Second source with second part of the commissioning was not needed

Advanced Ion Source for Hadrontherapy

AISHA is a hybrid ECRIS meeting the **needs of the installation in hospital** environments: the radial confining field is obtained by means of a permanent magnet hexapole, while the axial field is obtained with a **Helium-free superconducting system.**

06+ emit. (60π geom – 0.1π norm.) 0.5emA – Extraction 20 kV – 17.376 GHz – 500W

Radial field	1.3 T		
Axial field	2.7 T - 0.4 T - 1.6 T		INSPIRIT expected beams
Operating frequencies	18 GHz – 21 GHz	Activities in 2022	Carbon 24 kV (4+)
Operating power	1.5 + 1.5 kW	Recommissioning after improvements Beam emittance measurements (O,	Helium 16.01 kV;
Extraction voltage	40 kV	He, C, Ar)	Iron 23.55 kV;
Chamber diameter / length	Ø 92 mm / 360 mm	New setup for CNAO.	Lithium 18.71 kV;

AISHa @ CNAO

BIRGETE D'

fondazione

CNAO

INS_p**iRIT**

INnovative accelerator facility with Sources Ions for Research and radiation hardness studies with IndusTrial and clinical applications

Helium, Lithium, Oxygen and Iron for new clinical protocols and biological/material experiments for space radiation research

Source and ancillary equipment are being preassembled in INFN-PV.

Commissioning is planned to start in Q4-2022 and will envisage night shifts

Conclusions

The end of the phase supported by the PON, aiming at procurement and tenders, set a Start of User Programme (SOUP) at the end of Q2-2023 for the Tandem and in Q4-2023 for the Superconducting Cyclotron (CS). A number of improvements to the accelerators and to ancillaries will continue during the next months and also the R&D activities will be boosted by the end of infrastructural works that will permit to operate more or less as in the past years, that has been not the case in 2021. For sake of brevity I am not describing the Accelerator R&D activities, most of them in CSN5: HSMDIS, IONS, MICRON, etc but also Muon Collider, DTT, Life Sciences, etc. Some of these activities will be described in other talks (Mascali, Cuttone, Cirrone), others are in so early stage that may be the subject of future INFN-A workshops.

Photonic Crystal (PhC)-based Dielectric Laser Accelerator (DLA)

DLA high-Q photonic-crystal cavity [courtesy of C2N]

Lol Core Ideas:

- Hollow-core waveguides for high power handling
- **<u>High interaction impedance Z_c** and accelerating gradient</u>
- <u>Continuous wave (CW)</u> laser operation (1-5 μm)
- Collinear <u>co-propagating</u> laser and beam
 - Sub-wavelength features for sub-relativistic particles
- Integrated nano-proton-source for proton-DLA

RFQ-like 2D Longitudinal PBG for tabletop proton-DLA

2D longitudinal Photonic Crystal Directional Coupler

TM_{on} *T*E₁₀

3D woodpile mode converter side-coupler

3D Silicon Woodpile mode launcher

Handle with care

Turnover of researchers

Turnover of technicians with "multiple" expertise

<u>Cherrypicking by other Labs, or other fields, is a nightmare</u> (accelerators' people are success oriented, so highly appreciated <u>everywhere</u>)

Question: why a student should look to accelerator physics, less appealing with respect to other branches, that are well paved to become a Nobel laureate?