Workshop Nazionale INFN Acceleratori – 7 Aprile 2021

INFN-CSN1 Particle Physics with accelerators

Roberto Tenchini INFN - Pisa

CSN1 and Accelerators

- CSN1 deals with particle physics experiments at accelerators, therefore even if its task is not strictly related to the construction of new accelerators, the availability of the right machines is a pre-requisite for carrying out CSN1 projects.
- In this sense CSN1 promotes, in a broad sense, physics and detector studies to motivate the R&D and the construction of the most appropriate machines to reach the energy and intensity frontiers.

This presentation

- LHC and its upgrades
- Other projects and accelerators
- Future accelerators

CSN1 Sectors, FTE and budget (%): year 2022

CSN1 Sector in 2022	FTE (%)	Budget (%)
Physics at hadron colliders (LHC)	58,90	58,89
Flavor Physics (with LHCb) 2	25,97	22,52
Charged Lepton Physics	9,20	12,01
Proton Structure	3,15	3,56
R&D for Future Accelerators	2,79	3,02

LHC getting ready for RUN 3

- Run3 \rightarrow Physics from June 2022 to Nov 2025
- 100 fb⁻¹/year (1.8x10¹¹ p/bunch) or 85 fb⁻¹/year (1.4x10¹¹ p/bunch)
- Final confirmation of Run 3 beam energy: **6.8 TeV**
- 2029: start of HL-LHC (instead of mid 2027)
- 2038: official end of HL-LHC (this is subject of discussions ...)

HL-LHC – ATLAS and CMS Phase 2 upgrades (a huge construction efforts by CSN1 experiments ...)

INFN FTE ATLAS+CMS: 207,3 + 245,2

HL-LHC – ATLAS and CMS Phase 2 upgrades (a huge financial effort by the experiments ... and CSN1)

ATLAS

LHCb phase 1 upgrade (RUN 3): reach and goals

- INFN Core contribution to LHCb upgrade : 5.6 Meur
 - the new apparatus is designed to take data at a factor of 5 higher instantaneous luminosity
 - the trigger will work without level zero, with 2-3 times higher efficiency for hadron-based triggers
- The target is to collect 50 fb-1 in Run 3 compared to the 9 fb-1 of the Run1+2 current sample.
 - uncertainty on the CKM γ angle should from the current 4 degrees to 1 degree.
 - uncertainty on the B_s to $\mu\mu$ branching ratio reaching 10%
 - uncertainty on b → sll lepton universality tests expected to decrease by a factor 3

... and coming next: LHCb Upgrade 2 for Run-5

Belle II at SuperKEKB

INFN FTE: 49,5

Energy-asymmetric e^+e^- collider \rightarrow low

Features:

- The integrated luminosity was more than doubled in 2021, with respect to the 2020 and 2019 runs, for <u>a total of</u> <u>270 fb-1.</u>
- Restarted in 2022 with record luminosity 3.8 10³⁴
- Detectors of INFN responsibility (SVD, PID, ECL, KLM) performing well
- Operated remotely
- Some concern for beam losses: effort on monitoring and beam abort system
- First physics publications
- <u>Concerns about reaching the nominal</u> performance with superKEKB

It looks like the "old" Belle, but it is effectively a brand new detector

Only structure, magnet and calorimeter crystals are re-used

Other CSN1 interests/activities with accelerators

- Still significant activity with fixed target at the SPS (NA62, NA64, Compass, Amber, MUoNE) ≈ 75 FTE
- We are at Fermilab with g-2 and MU2E \approx 40 FTE
- At PSI high intensity muon beam for MEGII
- At Beijing with BES III at BEPCII
- New proposal at DESY EU.XFEL (LUXE)
- PADME at LNF
- UA9 crystal activities at CERN

CSN1 and future colliders at the frontier of energy and intensity

What Next: White Paper of CSN1 Proposal for a long term strategy for accelerator based experiments

> Editors F. Bedeschi, R. Tenchini, J. Walsh

The physics drivers (scenario consolidating in the past 10 years)

- Higgs: a scalar boson so light (125 GeV) that suits perfectly a circular e+e- collider
 - even LEP was close ... sensitive up to 115 GeV, (125/115=1.09), synchrotron energy loss per turn goes as E⁴/ρ, increase of radius by 1.4 corresponds to the same RF power as LEP
- New Physics: no sign of "easy BSM physics" in the 500 GeV – 1 TeV range

Where nature decided to put stuff (the electroweak playground)

The natural choice

Comprehensive long-term program maximizing physics opportunities

- stage 1: FCC-ee (Z, W, H, tt̄) as Higgs factory, electroweak & top factory at highest luminosities
- stage 2: FCC-hh (~100 TeV) as natural continuation at energy frontier, with ion and eh options
- complementary physics
- common civil engineering and technical infrastructures, building on and reusing CERN's existing infrastructure
- FCC integrated project allows seamless continuation of HEP after completion of the HL-LHC program

A first class infrastructure to maintain the leadership of European research in particle physics over the 21st century

FUTURE CIRCULAR COLLIDER	ollider para	ameters wi	th 2 IPs 🦷	K. Oide, D. Shatilov,
Parameter [4 IPs, 91.2 km,T _{rev} =0.3 ms]	Z	ww	H (ZH)	ttbar
beam energy [GeV]	45	80	120	182.5
beam current [mA]	1280	135	26.7	5.0
number bunches/beam	12000	880	272	40
bunch intensity [10 ¹¹]	2.02	2.91	1.86	2.37
SR energy loss / turn [GeV]	0.0391	0.37	1.869	10.0
total RF voltage 400/800 MHz [GV]	0.120/0	1.0/0	2.48/0	4.0/7.67
long. damping time [turns]	1170	216	64.5	18.5
horizontal beta* [m]	0.1	0.2	0.3	1
vertical beta* [mm]	0.8	1	1	1.6
horizontal geometric emittance [nm]	0.71	2.17	0.64	1.49
vertical geom. emittance [pm]	1.42	4.32	1.29	2.98
horizontal rms IP spot size [μm]	8	21	14	39
vertical rms IP spot size [nm]	34	66	36	69
beam-beam parameter ξ _x / ξ _y	0.003/ .159	0.011/0.111	0.0187/0.129	0.096/0.138
rms bunch length with SR / BS [mm]	4.38 / 12.1	3.55 / <mark>7.06</mark>	3.34 / <mark>5.12</mark>	2.02 / <mark>2.56</mark>
luminosity per IP [10 ³⁴ cm ⁻² s ⁻¹]	193	22	7.7	1.31
total integrated luminosity / year [ab-1/yr]	46	5.3	1.9	0.33
beam lifetime rad Bhabha / BS [min]	35	32	9	16

Stage 2: FCC-hh (pp) collider parameters

FUTURE CIRCULAR COLLIDER

parameter	FCC	-hh	HL-LHC	LHC
collision energy cms [TeV]	10	0	14	14
dipole field [T]	16	()	8.33	8.33
circumference [km]	رج 97 .	75	26.7	26.7
beam current [A]	CWee 0.	5	1.1	0.58
bunch intensity [10 ¹¹]	x ^{FO} 1	1	2.2	1.15
bunch spacing [ns]	25	25	25	25
synchr. rad. power / ring [kW]	24	00	7.3	3.6
SR power / length [W/m/ap.])	28	.4	0.33	0.17
long. emit. damping time [h]	0.5	54	12.9	12.9
beta* [m]	1.1 0.3		0.15 (min.)	0.55
normalized emittance [µm]	2.	2	2.5	3.75
peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	5 30		5 (lev.)	1
events/bunch crossing	170	1000	132	27
stored energy/beam [GJ]	8.4		0.7	0.36

Some key points about FCC

• FCC-ee is not just about brute-force luminosity

- <u>Continuous calibration of centre-of-mass energy</u> (e.g. 100 keV at the Z) with resonant depolarization
- Direct measurement of parameters, which were computed until now (e.g. direct measurement of α_{QED} running)
- There is a well-defined theory effort, to successfully use data in a meaningful way (e.g. 3-loop calculations)
- It has been shown in various ways (e.g. EFT analyses) that <u>a jump in precision in Z, W, H, top measurements is</u> <u>required</u> for a comprehensive interpretation of the electroweak sector
 - A deviation of a single coupling or operator will not provide the full picture
- FCC-hh is eventually required to precisely investigate the Higgs self-coupling, to close important chapters (e.g. WIMP interpretation of Dark Matter) and to significantly extend direct searches

	BU-HEPP-18-04, CERN-TH-2010-145, IFJ-PAN-IV-2018-09, KM 18-003 MITTP/18-052, MDP-2018-143, SI-HED-2018-21
	Standard Model Theory for the FCC-ee: The Tera-Z
	Report on the 1 st Mini workshop: Precision EW and QCD calculations for the FCC studies: methods and tools, 12-13 January 2018, CERN, Geneva
	https://indico.cern.ch/event/669224/
ornz dae zz fiid-daul	 A. Blondel¹, J. Gluzz^{4,2}, S. Jadach¹, P. Janvel¹, T. Rieman^{1,2} (editors), A. Allandov¹, A. Attonov¹, R. Boell¹, S. Boestmerne, S. B. Berner, S. B. Sterner, S. Granski, T. Habel¹, T. Jadach¹, W. Bieger¹, A. Pintas^{1,1}, K. Granski, T. Habel¹¹, T. Jadach¹¹, K. Shanovak¹¹, K. Silawak¹¹, K. S. Kangard¹¹, J. Mangal¹¹, O. Noroshif, G. Bepadopoulos¹¹, F. Percinni¹, R. Pitan¹¹, W. Flaczek¹¹, M. Tamas¹¹, S. Remand¹¹, G. Gröpp¹, R. Salyku¹¹, M. Storzyk¹¹, D. Scoklager¹¹, J. Lovinteh¹², B.H., Wall^{11,11}, S. Weinzeh¹¹, G. Yang²¹, S. Nord²¹
7400010	10PNC University of Genera, Shreineland, "Bastines of Physics, University of Silveris, 40:007 Karwice, Phand, "Instante of Wooden Physics, RN, NJ, 2018 Kandon, Pander, USER, RG, H-211 General Switzerland," Dataset of Wooden Physics, RN, NJ, 2018 Kandon, Germany, "Opparations de Fisica Torices, Universitad, Valencia, 4600 Winderic, Sapten and Archived Physics, Wooden, 214909 Ressis, 2018 University, "Described and Basting Sciences, Theory of Theoremical Physics, RNR, Dahan, 141909 Ressis, 2018 University, Physical Resolution, Basting, Sciences, 2018, USA, Sciences, 2019.

	# Higgs pairs to bbyy	_
LHC: 14TeV 300fb-1	36	
HL-LHC: 14TeV 3ab-1	360	percent
FCC: 100TeV 20ab ⁻¹	92 x 10 ³ 🔶	precision physics

CSN1: RD_FCC

105 scientists/15.3 FTE ~ 6-700 k€/yr (CSN1 & EU grants)

- IDEA detector: light tracker (Drift Chamber), a dual-readout calorimeter, and a light-weight magnet.
 - Baseline for physics/performance studies and technology exploration.
 - Test-beams in progress
- Machine-Detector-Interface
- Activities in simulation/software
 - Algorithm development:jet flavour tagging, Particle ID, tau reconstruction
 - Physics studies: Higgs Recoil, Flavor, Ағв(bb,cc), ALPS, Top

For general INFN FCC activities, prospects and opportunities see the talk of Manuela Boscolo tomorrow

https://agenda.infn.it/e/FCC-Italy

CSN1: RD_MUCOL

- 97 scientists/15.7 FTE
- ~ 300+X k€/yr (CSN1 & EU grants)
- Physics:
 - evaluation of physics reach in the presence of machine background
 - studies experiment design, simulations
 - theoretical work (with CSN4) and analysis with full Higgs and BSM simulation
- Ongoing detector R&D developments in sinergy
 with AIDAinnova
- Machine Detector Interface background studies at various energies <u>arXiv:2105.09116</u>
- Crystals for collimation and extraction: collaboration with FCCee

Specific for the LEMMA option

Targets: Simulations, laboratory and beam tests being finalized **Test Beam @ CERN in 2022:** $\mu^+\mu^-$ cross section at threshold

For general INFN Muon Coll activities, prospects and opportunities see the talk of Nadia Pastrone tomorrow

Summary

- Strong CSN1 involvement in HEP experiments with accelerators at the intensity and energy frontiers
- At present most of the budget focused on projects at CERN
 - LHC experiments upgrade taking most of the effort, both from the personnel and financial point of view
- Significant resources dedicated also to other activities:
 - Special focus on flavour and lepton sector
 - New experiments in preparation (SND, AMBER, LUXE, MUonE, MU2E)
- Special attention dedicated to the preparation for the future of our field
 - Our plan A is FCC (FCC-ee followed by FCC-hh): «A first class infrastructure to maintain the leadership of European research in particle physics over the 21st century»
 - We support studies for the Muon Collider a splendid tool for physics if technologically demonstrated

B

Timeline of the FCC integrated programme

FUTURE

CIRCULAR

Sensitivity to λ : via single-H and di-H production

Di-Higgs:

- HL-LHC: ~50% or better?
- Improved by HE-LHC (~15%), ILC₅₀₀ (~27%), CLIC₁₅₀₀ (~36%)
- Precisely by CLIC₃₀₀₀ (~9%), FCC-hh (~5%),
- Robust w.r.t other operators

Single-Higgs:

- Global analysis: FCC-ee365 and ILC500 sensitive to ~35% when combined with HL-LHC
 - ~21% if FCC-ee has 4 detectors
- Exclusive analysis: too sensitive to other new physics to draw conclusion

Towards no-lose arguments for Dark Matter scenarios:

Potenzialita' macchina adronica a 100 TeV

Physics reach from parton luminosities (normalized to 3 ab⁻¹ @ 14 TeV)

Physics reach from parton luminosities (normalized to 3 ab⁻¹ @ 14 TeV)

Global fit results

Improvement with respect to HL-LHC

Fig. by M. Cepeda

Global fit results

	820	824	822	SE	8°	81	8R	82	SR	8 <u>4</u> ~c	84 C	81	8r	81 s	8 ^d s	81	80 R	
	1	-	1	-	-	1	1	-	1		1	1	1	1	1	1	1	
ILC ₂₅₀ -	≥ 10	1.2	1.5	1.1	1.1	1.0	1.0	1.0	1.0	1.1	1.0	1.0		1.2	1.5	1.0	1.0	
ILC ₅₀₀ -	≥ 10	1.2	1.6	1.3	1.8	1.0	1.0	1.0	1.0	1.1	1.0	≥ 10	*	1.2	1.5	1.0	1.0	- 8
CLIC ₃₈₀ -	≥ 10	5.1	9.6	1.7	1.4	1.1	1.1	1.0	1.0	1.1	1.0	1.0		1.2	1.6	1.0	1.0	
CLIC ₁₅₀₀ -	≥ 10	5.3	≥ 10	2.7	1.9	1.1	1.1	1.0	1.0	1.1	1.1	≥ 10	*	1.3	1.6	1.0	1.0	- 6
CLIC ₃₀₀₀ -	$\geq 10^2$	5.4	≥ 10	3.1	2.4	1.1	1.1	1.0	1.0	1.1	1.1	≥ 10	*	1.3	1.6	1.0	1.0	
CEPC -	1.0	1.0	1.0	1.8	2.0	≥ 10	≥ 10	1.1	1.0	1.1	1.0	1.0		1.2	1.5	≥ 10	≥ 10	- 4
FCCee ₂₄₀ -	≥ 10	≥ 10	≥ 10	7.9	9.2	≥ 10	≥ 10	≥ 10	≥ 10	4.2	2.9	1.0		4.6	4.4	4.6	4.4	
FCCee ₃₆₅ -	≥ 10	≥ 10	≥ 10	9.9	10.0	≥ 10	≥ 10	≥ 10	≥ 10	4.2	2.9	7.5	*	4.6	4.4	4.6	4.4	- 2
FCCee/eh/hh -	≥ 10	≥ 10	≥10	9.9	≥10	≥ 10	≥ 10	≥ 10	≥ 10	≥ 10	≥10	9.1	*	≥ 10	≥ 10	4.6	4.4	

Improvement with respect to HL-LHC

-WARNING: CEPC EWPO ~ FCCee EWPO (except 365 GeV: top).

Difference due to current status of EWPO projections (Flav. Non-univ, sys,...)

Fig. by M. Cepeda

Muon collider vs hadron collider

 β represents different assumption on relations between parton luminosities

arXiv:2103.14043

Higgs compositeness scale, 2σ reach

