
Best practices for securing 
containerized applications
Andrea Ceccanti, Doina Cristina Duma

CC-BY 4.0

mailto:doinacristina.duma@cnaf.infn.it


Before we begin (about these slides)

These slides were prepared by Andrea 
Ceccanti
Kudos to the author!

2



Docker images best practices



Containers can be secure
But care and attention is required!
A google search for “Docker container security best practices” yields several 
results. I will talk a bit about some of the key advice I found in the following
resources:
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/dev-best-practices/
https://docs.docker.com/engine/security/
https://sysdig.com/blog/dockerfile-best-practices/

4

https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/dev-best-practices/
https://docs.docker.com/engine/security/
https://sysdig.com/blog/dockerfile-best-practices/


Use trusted base images
Always check the images you extend. Extend trusted, certified base images.

5



Update your images frequently

Use base images that are frequently updated, 
and rebuild yours on top of them.

As new security vulnerabilities are discovered 
continuously, it is a general security best 
practice to stick to the latest security patches.

6



Reduce attack surface: keep images minimal

Use multi-stage builds and leverage minimal base images. 
- If possible, use distroless base images

7

https://github.com/GoogleContainerTools/distroless


Do not run your application as root
Do not run your application as root within a container
- always use the USER instruction in your Dockerfile
- Provide appropriate file system permissions in the locations where the 

process will be reading or writing

8



Do not bind the user to a specific UID
Some platforms (e.g., Openshift) will use a random UID when running containers.

Use the tmp dir to write temporary data and make resources world readable

9



Make executables root owned and non-writable

This will block the executing user from modifying existing 
binaries or scripts, which could enable different attacks.

10



Make executables root owned and non-writable

This will block the executing user from modifying existing 
binaries or scripts, which could enable different attacks.

11



Prevent confidential data leaks
Never put any secret or credentials in the Dockerfile instructions.

Be extra careful with files that get copied into the container. 
- Even if a file is removed in a later instruction in the Dockerfile, it 

can still be accessed on the previous layers as it is not really 
removed, only “hidden” in the final filesystem.

Don’t include confidential information or configuration values that tie 
them to some specific environment (i.e., production, staging, etc.).

12



Favour COPY over ADD
Both the ADD and COPY instructions provide similar 
functions in a Dockerfile.
- However, COPY is more explicit.

Use COPY unless you really need the ADD functionality, like 
to add files from an URL or from a tar file. 
- COPY is more predictable and less error prone.

13



Understand the docker build context
Only include the minimal and necessary information in the docker build context.

Use the .dockerignore file, and use a dedicated folder for Docker image assets

14



Do not install unnecessary packages

To reduce complexity, dependencies, file sizes, 
and build times, avoid installing extra or 
unnecessary packages just because they might be 
“nice to have.” 
- For example, you don’t need to include a text 

editor in a database image.

15



Decouple applications
Each container should have only one concern.

Decoupling applications into multiple containers makes it easier to 
scale horizontally and reuse containers.

For instance, a web application stack might consist of three 
separate containers, each with its own unique image, to manage 
the web application, database, and an in-memory cache in a 
decoupled manner.

16



Minimize the number of layers
In recent Docker version, only the instructions RUN, COPY, 
ADD create layers.
Other instructions create temporary intermediate images, and 
do not increase the size of the build. 

Where possible, use multi-stage builds, and only copy the 
artifacts you need into the final image

17



Continuously build your images

When you check in a change to source control 
or create a pull request, use a CI/CD pipeline 
to automatically build and tag a Docker image 
and test it.

18



Properly tag your images
Follow a coherent and consistent tagging policy. 
- Document your tagging policy so that image users can easily understand it.

Container images are a way of packaging and releasing a piece of software.
Tagging the image lets users identify a specific version of your software in order to download it. 
For this reason, tightly link the tagging system on container images to the release policy of your 
software

Examples:
• Include a version number following semantic version in your tags
• Use the git commit SHA hash as a tag for your code

19



Use static image tags in production

Avoid “moving” tags like latest, the application could 
change without you being aware of it and break your 
system, i.e. the main benefit of immutability of the
infrastructure for which we use containers are lost!

There’s also an image caching and scalability aspect: 
using fixed tags reduces network traffic and can avoid 
hitting DockerHub download limits.

20



Scan images for vulnerabilities

DockerHub provides this service for Docker trusted images.
You can have a similar functionality on a local Harbor registry

22



Scan images for vulnerabilities
DockerHub provides this service for Docker trusted images.
You can have a similar functionality on a local Harbor registry

22



“take away”
Avoid unnecessary privileges

Avoid running containers as root
Don’t bind to a specific UID
Make executables owned by root and not writable

Reduce attack surface.
Leverage multistage builds
Use distroless images, or build your own from scratch
Update your images frequently
Watch out for exposed ports

Prevent confidential data leaks
Never put secrets or credentials in Dockerfile
Prefer COPY over ADD
Be aware of the Docker context, and use .dockerignore

Beyond image building.
Protect the docker socket and TCP connections
Sign your images, and verify them on runtime
Avoid tag mutability
Don’t run your environment as root
Include a health check
Restrict your application capabilities

Others
Reduce the no. of layers, and order them intelligently
Add metadata and labels
Leverage linters to automatize checks
Scan your images locally during development

23



Questions?


