Best practices for securing
containerized applications

Andrea Ceccanti, Doina Cristina Duma

INFN



mailto:doinacristina.duma@cnaf.infn.it

Before we begin (about these slide‘cs)@

These slides were prepared by Andrea
Ceccanti

Ku d OS ‘to th e a uth 0] rl Best practices for securing containerized

applications

Andrea Ceccanti
INFN CNAF

Corso CCR "Docker e Orchestrazione di container”
June, 17th 2021




Docker images best practices




Containers can be secure

But care and attention is required!

A google search for “Docker container security best practices” yields several
results. | will talk a bit about some of the key advice | found in the following

resources:

https://docs.docker.com/develop/develop-images/dockerfile best-practices/
https://docs.docker.com/develop/dev-best-practices/
https://docs.docker.com/engine/security/
https://sysdig.com/blog/dockerfile-best-practices/



https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/dev-best-practices/
https://docs.docker.com/engine/security/
https://sysdig.com/blog/dockerfile-best-practices/

Use trusted base images

Always check the images you extend. Extend trusted, certified base images.
%dockerhub Q Search for great content Explore  Pricing  Signin

@& Docker [®]) containers M Plugins

Filters (2)  Clear All 1- 25 of 9,097 available images. Suggested .
Images X Publisher Content X Official Image
Verified Publisher @
Official Images @ ubuntu @ official Image 1B+ 10K+
Official Images Published By Downloads  Stars
Updated 5 days ago
Docker
Ubuntu is a Debian-based Linux operating system based on free software.
Categories 6 Container Linux x86-64 ARM ARM 64 PowerPC 64 LE riscve4 IBM Z
m Analytics 386 Baselmages  Operating Systems
[ | Application
Frameworks
[ ] Application
Infrastructure alpine @ official Image 1B+ 8.4K
Downloads Stars
[ | Application Services Updated 2 months ago
m Base Images A minimal Docker image based on Alpine Linux with a complete package index and o...

Datab.
D aRases Container Linux 386 riscvé4 PowerPC 64 LE ARM 64 ARM x86-64 5

|| DevOps Tools e

Featured Images Base Images Operating Systems




o
-

Update your images frequently b

Use base images that are frequently updated,
and rebuild yours on top of them.

As new security vulnerabilities are discovered
continuously, it is a general security best
practice to stick to the latest security patches.



Reduce attack surface: keep images minimal %

Use multi-stage builds and leverage minimal base images.
- If possible, use distroless base images

FROM rust:1.41.0 as build-env
WORKDIR /app

ADD . /app

RUN cargo build --release

FROM gcr.io/distroless/cc
COPY --from=build-env /app/target/release/hello-world-distroless /
CMD [“./hello-world-distroless"]


https://github.com/GoogleContainerTools/distroless

Do not run your application as root 41

Do not run your application as root within a container
- always use the USER instruction in your Dockerfile

- Provide appropriate file system permissions in the locations where the
process will be reading or writing

FROM alpine:3.12

# Create user and set ownership and permissions as required
RUN adduser -D myuser && chown -R myuser /myapp-data

# ... copy application files

USER myuser

ENTRYPOINT ["/myapp"]



Do not bind the user to a specific UID . 241

Some platforms (e.g., Openshift) will use a random UID when running containers.

Use the tmp dir to write temporary data and make resources world readable

USER myuser
ENV APP_TMP_DATA=/tmp
ENTRYPOINT ["/myapp" ]



Make executables root owned and non-writable g

This will block the executing user from modifying existing
binaries or scripts, which could enable different attacks.

WORKDIR $APP_HOME

COPY --chown=app:app app-files/ /app
USER app

ENTRYPOINT /app/my-app-entrypoint.sh

10



Make executables root owned and non-writable g

This will block the executing user from modifying existing
binaries or scripts, which could enable different attacks.

‘COPY --chown=app:app app-files/ /app \ Alffjfik
app

ENTRYPOINT /app/my-app-entrypoint.sh

11



o
-

Prevent confidential data leaks 21

Never put any secret or credentials in the Dockerfile instructions.

Be extra careful with files that get copied into the container.

- Evenif afile is removed in a later instruction in the Dockerfile, it
can still be accessed on the previous layers as it is not really
removed, only “hidden” in the final filesystem.

Don’t include confidential information or configuration values that tie
them to some specific environment (i.e., production, staging, etc.).

12



Favour COPY over ADD

Both the ADD and COPY instructions provide similar
functions in a Dockerfile.

- However, COPY is more explicit.

Use COPY unless you really need the ADD functionality, like
to add files from an URL or from a tar file.

- COPY is more predictable and less error prone.

13



Understand the docker build conte‘kt@

Only include the minimal and necessary information in the docker build context.

Use the .dockerignore file, and use a dedicated folder for Docker image assets

docker build -t myimage . A

docker build -t myimage assets/ @

14



Do not install unnecessary packag‘oesg

To reduce complexity, dependencies, file sizes,
and build times, avoid installing extra or

unnecessary packages just because they might be
“nice to have.”

- For example, you don't need to include a text
editor in a database image.

15



Decouple applications

Each container should have only one concern.

Decoupling applications into multiple containers makes it easier to
scale horizontally and reuse containers.

For instance, a web application stack might consist of three
separate containers, each with its own unique image, to manage
the web application, database, and an in-memory cache in a
decoupled manner.

16



o
-

Minimize the number of layers 8

In recent Docker version, only the instructions RUN, COPY,
ADD create layers.

Other instructions create temporary intermediate images, and
do not increase the size of the build.

Where possible, use multi-stage builds, and only copy the
artifacts you need into the final image

17



o
-

Continuously build your images 8

When you check in a change to source control
or create a pull request, use a CI/CD pipeline

to automatically build and tag a Docker image
and test it.

18



Properly tag your images

Follow a coherent and consistent tagging policy.
- Document your tagging policy so that image users can easily understand it.

Container images are a way of packaging and releasing a piece of software.
Tagging the image lets users identify a specific version of your software in order to download it.

For this reason, tightly link the tagging system on container images to the release policy of your
software

Examples:
* Include a version number following semantic version in your tags
» Use the git commit SHA hash as a tag for your code

19



Use static image tags in productioﬁ b

Avoid “moving” tags like latest, the application could
change without you being aware of it and break your
system, i.e. the main benefit of immutability of the
infrastructure for which we use containers are lost!

There’s also an image caching and scalability aspect:
using fixed tags reduces network traffic and can avoid
hitting DockerHub download limits.

20



DockerHub provides this service for Docker trusted images.

You can have a similar functionality on a local Harbor registry

caifti Repositories

General

Advan
View all
Team ar

® caift

This repository
@© Lastpush
1

Tags and Sc
This repositor

TAG

e vii

Explore  Repositories  Organizations Help ¥ Upgrade \@ (

Using 0 of 1 private repositories. Get

’ d

Upgrade your subscription to enable
Vulnerability Scanning

With Vulnerability Scanning, any images you push to Hub are
automatically scanned for OS and application vulnerabilities, powered
by Snyk. View detailed scan reports on a per-tag basis to assess
potential threats, and measure trends over time.

Available with Pro, Team and Business subscriptions.

Upgrade to Pro Learn more

X

View previ¢

Public View

[

nect your
omatically
our code is
)n creating.

5

=

Harbor

&5 Projects
Logs

» Administration

@ LIGHT

© Harbor API V2.0

infn.it w

(D) The default scanner has been installed. To install other scanners refer to the documentation.

Projects Projects Repositories

P Private

Project Name

i

Q aiftim

Storage used

23.51as

All Projects

EVENT LOG




DockerHub provides this service for Docker trusted images.
You can have a similar functionality on a local Harbor registry

library/centos

@ Vulnerability Severity: Critical

22




“take away”

Avoid unnecessary privileges
Avoid running containers as root
Don’t bind to a specific UID
Make executables owned by root and not writable
Reduce attack surface.
Leverage multistage builds
Use distroless images, or build your own from scratch
Update your images frequently
Watch out for exposed ports
Prevent confidential data leaks
Never put secrets or credentials in Dockerfile
Prefer COPY over ADD
Be aware of the Docker context, and use .dockerignore

Beyond image building.
Protect the docker socket and TCP connections
Sign your images, and verify them on runtime
Avoid tag mutability
Don’t run your environment as root
Include a health check
Restrict your application capabilities
Others
Reduce the no. of layers, and order them intelligently
Add metadata and labels
Leverage linters to automatize checks
Scan your images locally during development

23



Questions?




