Apache Mesos

Basic concepts

Marica Antonacci (INFN Bari)
marica.antonacci@ba.infn.it

[@0Se)

Corso docker e orchestrazione di container - 7-11 Feb, 2022

. INFN
Outline A

e Whatis Mesos

o Architecture
o Main components overview

Two-level scheduling and Resource isolation

Running long-running services on a Mesos cluster with Marathon
Executing jobs on a Mesos cluster with Chronos

Use cases

Corso docker e orchestrazione di container - 7-11 Feb, 2022 2

The birth of Mesos <R

TWITTER TECH TALK

The grad students working on Mesos
give a tech talk at Twitter.

*

APACHE INCUBATION

Mesos enters the Apache Incubator.

Spring 2009 September 2010
O O (T O
March 2010 December 2010
¢ *
(S262B MESOS PUBLISHED D AT A CENTER ME s 0 s
Ben Hindman, Andy Konwinski and Mesos: A Platform for Fine-Grained
Matei Zaharia create “Nexus” as their Resource Sharing in the Data Center is)
CS262B class project. published as a technical report.
S W W W 0\
]
===== A
N —]
ss2=2= - °
=]
B W W W \
I e e

“We wanted people to be able to program for the datacenter just like they program for their laptop”

Benjamin Hindman, Apache Mesos PMC Chair

https://people.eecs.berkeley.edu/~alig/papers/mesos.pdf

Corso docker e orchestrazione di container - 7-11 Feb, 2022

https://people.eecs.berkeley.edu/~alig/papers/mesos.pdf

Mesos adoption

Production-proven Web Scale Cluster Managers

Borg/Omega Tupperware/Bistro
~2001 ~2007

Proprietary Proprietary
Google facebook.

Apache Mesos
2010+

Open Source (Apache License)

, & airbnb € twosiema B payPal
h

RETURN OF THE BORG: HO“I How Apple got Siri to run much faster, for a lot less cash
TWITTER REBUILT GOOGLES P
SECRET WEAPON

NETFLIX yelps

_ BUSINESS
= INSIDER ENTERPRISE

i MIBER

Apple has mor

new
technology called Apache Mesos

° Built at UC Berkeley AMPLab by Ben Hindman (Mesosphere Co-founder)
° Built in collaboration with Google to overcome some Borg Challenges
° Production proven at scale +80K hosts @ Twitter

Corso docker e orchestrazione di container - 7-11 Feb, 2022

What is Mesos CNER

Mesos has been described as a Datacenter Kernel as it provides a single unified view of node resources to software frameworks that wish to
consume them via APls.

Mesos performs the role of an intelligent global level scheduler that can match a massive pool of hardware resources to distributed applications that
want to consume these resources.

Mesos aggregates all the resources into a large virtual pool using not just virtual machines and containers but primitives such as CPU, I/0 and RAM.

It breaks applications into small units that can be assigned across this pool. Mesos also provides APIs in multiple languages to allow applications to
be built for it. Apache Spark, the most popular data processing engine, was built originally as a Mesos framework.

Native Long running Batch

A Spark, MPI, App A App Recurring Jobs
Hadoop, Storm Docker Docker (ETL, backups)

NN

Mesos SDK Services REST API Batch REST API

API Java, Python, C++, Go “Marathon” (init) “Chronos” (cron)

Kernel Mesos

Hardware Serv 'Serv 'Serv ' Serv AWS, DO, GCE

Corso docker e orchestrazione di container - 7-11 Feb, 2022 5

Mesos Architecture

There are 4 important components to run Mesos:

e Master. Coordinates the work and decides
which framework gets how many resources
e Zookeeper. Used as distributed storage,

Framework B
Scheduler
Framework A
Scheduler
ZooKeeper

enables the coordination of the masters o e

e Slave: A worker node which provides its Leaser » oo
resources to run tasks of a framework \

e Framework: Has a scheduler component Mesos Agent | | Mesos Agent Mesos Agent
which decides where a task gets launched Faxecuor || || Exeouor || | [TA T
and an executor which executes one or more " D || [k |

tasks at the Slave.

Corso docker e orchestrazione di container - 7-11 Feb, 2022

Mesos features

Fault-tolerant replicated master using ZooKeeper

Scalability to thousands of nodes

Isolation between tasks with containers

Multi-resource scheduling (memory and CPU/GPU aware)

Java, Python and C++ APIs for developing new parallel applications
Web Ul for viewing cluster state

Corso docker e orchestrazione di container - 7-11 Feb, 2022

Two level scheduling

Framework 1

Job 1 |

Job 2

Mesos defines a minimal interface that enables (
<s1, 4cpu, 4gb, ... > (2

FW Scheduler

Framework 2
Job1 | Job2
FW Scheduler

<task1, s1, 2cpu, 1gb, ... >
<task2, s1, 1cpu, 2gb, ... >

Mesos
master

<fw1, task1, 2cpu, 1gb, ... >
<fw1, task2, 1cpu, 2gb, ... >

efficient resource sharing across frameworks —
. N Allocati

and otherwise push control of task scheduling —ert)
and execution to the Frameworks : z
<s1, 4cpu, 4gb, ... > (1 '/GD

Agent 2

Executor
| Task H Task I

Corso docker e orchestrazione di container - 7-11 Feb, 2022

. . INFN
Resource isolation (INEN

The allocation of resources to one framework/job or user should not have any unintended effects on the
running jobs.

Mesos provides various isolation mechanisms on slaves (containerizers) to provide an isolated environment
to run an executor and its tasks.

Containerizer APl - e cccmmccccccrcccc e crccrcr e rc e e r e - ---

Disk Isolator

Isolator API Docker APl = ac'aaidie e S aiail

Container 1

Corso docker e orchestrazione di container - 7-11 Feb, 2022 9

Mesos containerizers

Docker containerizer: This containerizer allows tasks to be run inside docker container

MESOS containerizer. This is the native Mesos containerizer solution. It uses Linux-specific
functionalities such as control cgroups and namespaces and allows tasks to be run with an array
of pluggable isolators provided by Mesos.

Nvidia GPU support is only available for tasks launched through the Mesos containerizer (i.e., no
support exists for launching GPU capable tasks through the Docker containerizer).

Note: from version 1.0 on, the Mesos containerizer supports running docker images natively!

Corso docker e orchestrazione di container - 7-11 Feb, 2022 10

Long-running services on Mesos

Corso docker e orchestrazione di container - 7-11 Feb, 2022 1

Marathon Framework

e Marathon is a framework used for running long-running services on Mesos

e Marathon is the equivalent of the service management system
o in Linux, this is commonly referred to as the init system.

e Marathon deploys applications as long-running Mesos tasks, both in Linux
cgroups and Docker containers.

e It can be considered a private platform as a service (PaaS) on which to
deploy applications. Marathon does this by launching instances of an
application as long-lived Mesos tasks

Corso docker e orchestrazione di container - 7-11 Feb, 2022 12

Orchestration with Marathon <

1) Configuration/package management

N
o making sure all the dependencies for a service are met and <
the environment is configured properly for the service docker
before the service starts

2) Deployment

o Deployment of a service can be complex if service depends
on other services and there are constraints about where the
service can be deployed

3) Service discovery & Load-balancing

o where are the instances of a particular service running?

HA
PROXY

o which instance should a given request go to?

Corso docker e orchestrazione di container - 7-11 Feb, 2022 13

Marathon Web Interface (iR

The Marathon web Ul provides a convenient interface with Marathon.

Yet it is no longer actively maintained and therefore the usage of the Marathon REST API is
strongly recommended to access the latest Marathon features.

Corso docker e orchestrazione di container - 7-11 Feb, 2022 14

Marathon REST APlIs <R

Main endpoints:

API Endpoint Description

/v2/deployments Query for all running deployments on a Marathon instance ('GET')

/v2/deployments/ Query for information about a specific deployment (GET)

/v2/apps Query for all applications on a Marathon instance (GET) or create new applications (POST)

/v2/apps/ Query for information about a specific app (GET), update the configuration of an app (PUT), or delete an app (DELETE)

/v2/groups Query for all application groups on a Marathon instance (GET) or create a new application group (POST)

/v2/groups/ Query for information about a specific application group (GET), update the configuration of an application group (PUT), or delete an

application group (DELETE)

https://mesosphere.qithub.io/marathon/api-console/index.html

Corso docker e orchestrazione di container - 7-11 Feb, 2022 15

https://mesosphere.github.io/marathon/api-console/index.html

Running a simple dockerized service <k

A service is described in JSON format.

The id tag is the name of the service. It is displayed in the service list.

The instances tag tells Marathon that only one instance is needed. It can be ,,%d : SImI:}e_nglnx !

increased or decreased as needed later. L
"cpus": 0.25,

The cpus and mem tags are hints to Marathon as to what percentage of CPU "mem": 64,

and the amount of RAM is needed. They do not actually set resource limits in "container": {

Docker. However, Marathon may kill tasks that use more than the allocated "type": "DOCKER",

resources. In this case, the application is requesting 25 percent of a CPU and "docker": {
64 MB of RAM. "image": "nginx:1.11",

; . . . "network": "BRIDGE",
The container tag is where the Docker container is defined. The type tag "portMappings": [

defines the Containerizer that will be used to run the Mesos task. In this case {
is set to DOCKER.

"containerPort": 80,

The image is set in the image tag. This is the same image name that will be "hostPort": 0
passed to docker run.

Finally, the network tag is set to BRIDGE, which tells the Docker Engine to use
bridge networking and map containerPort 80 to the ephemeral hostPort
assigned dynamically.

Corso docker e orchestrazione di container - 7-11 Feb, 2022 16

Health checks and rolling upgrades

Marathon provides optional HTTP- and TCP-based health checks for each of the
instances of a particular application.

In the event that an instance starts failing its health checks - either by returning an
HTTP error code or by failing a TCP connection - the task will be reported as
unhealthy. After a certain number of failed health checks, Marathon will restart the
unhealthy task. The parameters of these health checks are all configurable.

These health checks also allow you to perform rolling upgrades of an application,
ensuring a minimum level of service, or capacity, so that new instances come up
healthy before the upgrade proceeds.

Combine these features with dynamically configured load balancers, and
Marathon allows for zero-downtime deployments of new versions of applications.

Corso docker e orchestrazione di container - 7-11 Feb, 2022 17

Examples of health checks

Specifies health-check

protocol. Valid values Path to query
are HTTP, TCP, and (HTTP only)
"healthChecks": [COMMAND.

{

"protocol": "HTTP", Index of the port to
Ignores health_ Ilpathll .o /pingu , quel‘y n the appllcatlon’s
check failures "portindex": O, ports array
within N seconds "gracePeriodSeconds": 3,
of the task "intervalSeconds": 30, <b—1 |S‘eccl)tl;‘dsl:)etl\(~een
being started. "timeoutSeconds": 10, SR SIEESS

"maxConsecutiveFailures": 3 G

1 ' Health check
"protocol": "COMMAND", Gme=olls
"command":

"value": "curl -f -X GET http://$HOST:$PORTO/ping"

}, Number of
"maxConsecutiveFailures": 3 cqnsecutlve

} failures allowed

] before the task
is killed

Corso docker e orchestrazione di container - 7-11 Feb, 2022

18

URIs field & Mesos fetcher CNiN

The Mesos fetcher is a way by which resources can be downloaded in the task
sandbox directory while preparing the task execution.

The Mesos fetcher natively supports the FTP and HTTP protocols, and is also able
to copy over files from a filesystem. It also supports all Hadoop client protocols

such as Amazon Simple Storage Service (S3), Hadoop distributed Filesystem (
HDFS), and so on.

If you specify an archive file (for example, zip or tar.gz) in the URIs field, the Mesos
fetcher will automatically extract the archive for you in the sandbox.

The downloaded URIs can also be cached in a specified directory for reuse.

Corso docker e orchestrazione di container - 7-11 Feb, 2022 19

Running stateful application on Marathon <

Regardless of the lifespan of the container the data should always persist.

The container could be scheduled to run on any node in the cluster, meaning
persistent data may need to be accessed from any node.

Marathon supports stateful applications/services by:

e using local persistent volumes
o Failure of a node? data is lost
e using external volumes (EBS, Cinder, etc.)

Corso docker e orchestrazione di container - 7-11 Feb, 2022 20

Docker volume driver isolator

The docker/volume isolator interacts with Docker
volume plugins using dvdcli, an open-source
command line tool from EMC.

Docker Volume
Isolator

| dvdcli

Docker Volume
Driver Client

dvdcli mount —volumedriver=convoy —volumename=vol1

Docker Daemon
(Optional)

Volumes

A4

HTTP/JSON
UNIXTCP
SOCKETS for
Docker Volume
API

A

Docker Volume
Driver Plugin

v

OpenStack Cinder

A

AWS EBS

v

VirtualBox

Corso docker e orchestrazione di container - 7-11 Feb, 2022

21

Rex-Ray driver

e Provides a vendor agnostic storage orchestration engine
o Amazon EBS, Ceph, Openstack Cinder, EMC ScalelO, GCE, XtremlO, etc.

"volumes": |
{
"external": {
“name": "mysql-rexray-volume”,
"provider”: "dvdi",
"options": {
"dvdi/driver": "rexray"”

}

}

"containerPath’: "/var/lib/mysql",
llmodell: IIRWII

}

Marathon networking

Marathon has three networking modes:

e host: each application shares the network namespace of the Mesos agent process,
typically the host network namespace.

e container/bridge: each application should be allocated its own network namespace
and IP address; Mesos Container Network Interface (CNI) provides a special
mesos-bridge that application containers are attached to. When using the Docker
containerizer, this translates to the Docker “default bridge” network.

e container: each application should be allocated its own network namespace and IP
address; Mesos network isolators are responsible for providing backend support for
this. When using the Docker containerizer, this translates to a Docker “user”
network.

Corso docker e orchestrazione di container - 7-11 Feb, 2022 23

Networking mode “host” - example

In this example, we have a single port t 'id": "hetpi”
definition labelled ‘http’ and it's set to a "networks": [{ "mode":
value of 0, meaning Marathon will 1 e
. "portDefinitions": |
choose it on our behalf. ("port™: 0, "name": "http"}
]I
. . . "container": {
The application takes an environment "type": "DOCKER",
variable that's set for us by Marathon FERENIETE | _
"image":
called PORT_HTTP as named under the ndeoslabs/httpi:latest”,
portDefinitions section. This is passed } MEEEE G e
to the small Golang application and .

tells it to listen on the value specified in "instanccoes;: 1,
"cpus": 0.1,

that environment variable e S

Networking mode “container/bridge” - example

In this example, the service
inside the container is running
on port 6379 and a pseudo
random port on the host will be
setup enabling bridge/NAT
communication to the container
port.

"db" ,
"instances": 1,
"cpus": 0.1,

"mem": 128.0,

"disk": 0.0,

"container": {
"type": "DOCKER",
"docker": {

"image": "redis:3.0.3",
"network": "BRIDGE",
"portMappings": [
{ "containerPort": 6379,
"hostPort": 0, "protocol": '

Networking mode “container” - example

The “container” mode is the most advanced scenario: a
dedicated IP address is allocated to each container.

Containers get their own Linux networking namespace (and
thus a dedicated network stack), and connectivity is
managed by the underlying software-defined networking
(SDN) provider technology.

For example, Calico provides 3rd-party CNI plugin that
works out-of-the-box with Mesos CNI.

Calico takes a pure Layer-3 approach to networking,
allocating a unique, routable IP address to each Mesos
task.

{

}

"id": "/calico-docker",
"instances": 1,

"container": {

"type": "DOCKER",
"volumes": [],

"docker": {

"image": "mesosphere/id-server:2.1.0"

}

}I
"cpus": 0.1,

"mem": 128,

"requirePorts":

"networks": [

{

"mode": "container",

"portMappings": []

false,

"name": "calico"

}
1

"fetch": [1,
"constraints":

"healthChecks":

[1,
[1

Service Discovery with Mesos-DNS

Mesos-DNS is a stateless service that allows services running in Mesos to find
each other through DNS.

It periodically queries the Mesos master(s), retrieves the state of all running tasks
from all running frameworks, and generates DNS records for these tasks:

e DNS A records associate a host name to IPs
e DNS SRV records associate services to IPs and Ports

Applications and services running on Mesos slaves can discover the IP addresses
and ports of other applications they depend upon by issuing DNS lookup requests
or by issuing HTTP request through a REST API.

Corso docker e orchestrazione di container - 7-11 Feb, 2022 27

Service Load-Balancing with Marathon-LB

Marathon load balancer (Marathon-LB) is a proxy server and load balancer for TCP, HTTP,
and HTTPS requests based on HAProxy open-source software.

Marathon-Ib subscribes to Marathon's event bus and updates the HAProxy configuration
in real time.

e Services are exposed on their service port as
defined in their Marathon definition.
e Apps are only exposed on LBs which have the Event

subscription Mesos agent

same LB tag (or group) as defined in the ——

Marathon app's labels (using -
HAPROXY_GROUP). HAProxy parameters can be 2 Sy
tuned by specifying labels in your app. W haproxy Mesos agent

Container

Container

Furthermore, Marathon-lb provides support for TLS/SSL and Virtual Hosts

Corso docker e orchestrazione di container - 7-11 Feb, 2022

Marathon-LB topologies <&

Internet Internet
Marathon-LB as Marathon-LB for internal
~ cluster-edge load balancer ‘_ and external requests
Y
External network Virtual private cloud
(oMz) D, (VPC) network
E MammthoniB £ RNl 0000 e
4 (HAProxy) : * AWS Elastic load '2 Dot Kesiisss ..n.....':._.
............................ ¢ “balancer (£L8) ¢ i
.............................. .“ bt
Inbound requests Public IP address]
public-facing IP address I
Internal network f;:f;';al DatwOrk l Internal network
privateagentnode | | | el

:) i Public or private
i ~ : Z [N i agentnode

‘ | s [applyet %

Tessnssnse Appg;]----' . b
D,) < A

g Marathon
Marathon — E

..............................

ol
o,

iii Marathon-LB
% (HAProxy)

$ ~:r 1 m..E App e
......... ! App J PP j
Client traffic routed to |

apps on private nodes

Corso docker e orchestrazione di container - 7-11 Feb, 2022 29

Executing jobs on Mesos

Corso docker e orchestrazione di container - 7-11 Feb, 2022 30

Chronos Framework <R

Chronos can be considered as a time-based job scheduler, such as cron in the
typical Unix environment.

Chronos is distributed and fully fault-tolerant, and it runs on top of Apache
Mesos.

It was originally developed at Airbnb to handle its complex data analysis pipelines

Chronos allows you to run shell scripts and is also natively able to schedule jobs
that run inside Docker containers.

Moreover it supports dependencies and retries.

Corso docker e orchestrazione di container - 7-11 Feb, 2022 31

Chronos web Ul CNeN

Chronos comes with a Web Ul in which you can see the job status, statistics of the
job’s history, job configurations, and retries.

®© ® @ cHroNOS x + (]
€« C A Nonsicuro | 192.168.28.151:4400 % ®@ 006 B 9@ ¢ % ® 40 @ :

+ ADD JoB

SUCCESS 3 FAILURE 1 FRESH 0 QUEUED 0 IDLE 4
JOB NEXT RUN STATUS STATE
test in ~24 hours success idle
jobl in ~24 hours success idle
job2 in ~24 hours failure idle
job3 in ~24 hours 2 success idle

© 2016 Mesosphere, Inc.

Corso docker e orchestrazione di container - 7-11 Feb, 2022 32

REST AP <

API Endpoint Description

GET /v1/scheduler/jobs This lists all jobs. The result is that JSON contains executor, invocationCount, and schedule/parents
DELETE /v1/scheduler/jobs This deletes all jobs
DELETE This deletes tasks for a given job

/v1/scheduler/task/kill/jobName

DELETE /v1/scheduler/job/jobName This deletes a particular job based on jobName

PUT /v1/scheduler/job/jobName This manually starts a job

POST /v1/scheduler/iso8601 This adds a new job. The JSON passed should contain all the information about the job

POST /v1/scheduler/dependency This adds a dependent job. It takes the same JSON format as a scheduled job. However, instead of the schedule

field, it accepts a parents field.

GET /v1/scheduler/graph/dot This returns the dependency graph in the form of a dot file

https://mesos.qithub.io/chronos/docs/api.html

Corso docker e orchestrazione di container - 7-11 Feb, 2022 33

https://mesos.github.io/chronos/docs/api.html

Chronos simple job definition

"schedule": "R/2021-06-15T22:57:59Z/PT24H", POST /v1/scheduler/iso8601
"name": "sleep-job",
"description": "Sleep for 60 seconds and return.",
"cpus": 0.5,
"mem": 256,
"disk": 500, "schedule": "R/2021-06-15T17:22:00Z/PT2M",
"command": "sleep 60", "name": "dockerjob",
"retries": 2 "container": {
"type": "DOCKER",
"image": "ubuntu:latest",
"network": "BRIDGE",

"volumes": [
Date and time to start the job, {

following the 1SO 860l standard "containerPath": "/var/log/"

‘ "hostPath": "/logs/",
l'mode " : IVRW"

s N
R/2015-10-05T22:00:00Z/PT10M

1
b,
"cpuS"! "0.5",

Number of times to repeat a job. Run interval, following the "mem": "512",)
“R” alone repeats the job forever; “durations” component of "command": "while sleep 10; do date =u %T; done"
“Rn” repeats the job n times the 1SO 8601 standard

Dependency-based jobs

In Chronos, dependency-based jobs don't contain a schedule field, but instead
specify one or more parent jobs (using the parents field) that must complete
before that job will run.

Extract job

Schedule-based job:
"schedule": "R/2015-10-31T00:00:00Z/PT24H"

\ A

Transform job 1 Transform job 2 Dependency-based jobs:

"parents": ["extract-job"]

"parents": [

POST /v1/scheduler/dependency , "transform-jobl",

"transform-job2"

Load job]

Corso docker e orchestrazione di container - 7-11 Feb, 2022 35

Mesos Use-cases

36

Corso docker e orchestrazione di container - 7-11 Feb, 2022

Mesos @ Netflix CniR

e Mantis: a reactive stream processing platform. Netflix created this project for
its engineering teams to get access to real-time events and build applications

on top of them.
o Mantis covers varied use cases including real-time dashboarding, alerting, anomaly detection,
metric generation, and ad-hoc interactive exploration of streaming data

e Titus: a Docker container job management and execution platform.
o Titus uses a master to assign resources from Mesos agents. Titus provides integration into
the Netflix microservices and AWS ecosystem, including integrations for service discovery,
software-based load balancing, monitoring, and Netflix's Cl/CD pipeline, Spinnaker.

e Meson: a general-purpose workflow orchestration and scheduling framework
that Netflix built to manage machine learning pipelines.

e Fenzo: a scheduler Java library for Apache Mesos frameworks that supports
plugins for scheduling optimizations and facilitates cluster autoscaling.

https://netflixtechblog.com/distributed-resource-scheduling-with-apache-mesos-32bd9eb4ca38

Corso docker e orchestrazione di container - 7-11 Feb, 2022 37

https://github.com/Netflix/mantis
https://github.com/Netflix/titus
https://github.com/Netflix/Fenzo
https://netflixtechblog.com/distributed-resource-scheduling-with-apache-mesos-32bd9eb4ca38

INDIGO PaaS & Mesos

The INDIGO PaaS is able to perform TOSCA deployment on Mesos clusters.

High-Level
User-Interfaces

Container ’

Platforms kubernetes

Private BT ‘\4ESOS
TOSCA ne |
Clouds Eg»‘
aR-¥ AW |
s T e
o\ o /
PaaS
Public Orchestration m
System I

HPC
sites
The PaaS Orchestrator interacts via REST API with

° Marathon to deploy, monitor and manage Long-Running services, ensuring that they are always up and running.
° Chronos to run user applications (jobs), taking care of fetching input data, handling dependencies among jobs, rescheduling failed jobs.

Corso docker e orchestrazione di container - 7-11 Feb, 2022

38

Mesosphere DC/0S <R

MICROSERVICES, CONTAINERS, & DEV TOOLS DATA SERVICES, MACHINE LEARNING, & Al
Mesosphere is founded
| sl &8 A P
o) r V Jm@“ Spark cassandra kafka ALLUXIO 4
Andressen Horowitz and Fuel Capital make .g
major investment, second office opens in kubernetes MARATHON O 20+ ée, 100+
Germany pog Atciry MORE sl ezt My T4 MORE

Distributed Cloud Operating System (DC/OS)
is launched

Application-Aware Security & Hybrid Cloud
Automation Compliance Management

Multitenancy

HPE makes major investment, Apache Mesos

1.0 and DC/0S open source is launched

D2
IQ

Datacenter and Cloud as a Single Computing Resource

T. Rowe Price and KDT make major
investment, Mesosphere Kubernetes Engine
(MKE) is launched, Mesosphere is 55th
Fastest Growing Company in North America
on Deloitte's Technology Fast 500

& &, &

PHYSICAL INFRASTRUCTURE VIRTUAL MACHINES PUBLIC CLOUDS
0 = == s
o = = & == n aws A
Mesosphere becomes D2iQ, KUDO and Edge Datacenter openstack. VIMWAare Microsoft Google J Azure

Konvoy are launched

From https://d2ig.com/products/dcos:
End-of-life date for DC/0S: October 31, 2021

It will be replaced by the D2iQ Kubernetes Platform (DKP).
<<Why? Kubernetes has now achieved a level of capability that only DC/OS could formerly provide and is now evolving and
improving far faster (as is true of its supporting ecosystem)>>

Kommander and Dispatch are launched

https://d2iq.com/products/dcos

Mesos - Hands-on
https://maricaantonacci.github.io/mesos-tutorial/

Corso docker e orchestrazione di container - 7-11 Feb, 2022 40

https://maricaantonacci.github.io/mesos-tutorial/

References & credits <

http://mesos.apache.orqg/

https://people.eecs.berkeley.edu/~alig/papers/mesos.pdf

https://mesosphere.qithub.io/marathon/

https://mesos.qgithub.io/chronos/

https://dcos.io/

Corso docker e orchestrazione di container - 7-11 Feb, 2022 41

http://mesos.apache.org/
https://people.eecs.berkeley.edu/~alig/papers/mesos.pdf
https://mesosphere.github.io/marathon/
https://mesos.github.io/chronos/
https://dcos.io/

