INFN

Container introduction

oS0

What is Cloud Automation @

HOW MUCH PUBLISHED WORK IN YOUR

Don’t know Yes, a significant crisis

* Simply put, Cloud Automation is a set of processes ricio is reprobucisLe?
and technologies that allow to automatize several =~ = owscswo oo
operations related to Cloud computing. ! - | oo

* Doing things by hand is rarely a good idea when — — —
complexity increases, and we have already seen = e B cor s S
several relatively complex technologies. This is] —
closely linked to key topics such as reproducibility. : - -

|
. . } 25% of respondents
* For examples linked to biology, |
7, . IS THERE A REPRODUCIBILITY CRISIS? BIOLOGY MEDICINE OTHER
see e.g. “Cloud Computing . | i

May be Key to Data
Reproducibility”.

(%]
o
N
% of published literature that
is reproducible (predicted)

_________ ——

* See also Nature, Vol. 533, 26 = — R —
May 2016, pp. 452-454, “1,500 T "]
SCientiStS Ilft the lld on sl Numberofrespondentsfromleachdiscipline: ; .
reproducibility”. M 70 i e e e

Microservices INFN

* When discussing applications designed for the Cloud, you have
already seen in the previous presentations the analogy of pets

(each one is unique and irreplaceable) vs. cows (many identical
instances of a functionally equivalent “item”).

* Microservices are a way to build applications as a collection of
(potentially many) small autonomous services vs. creating a big
service (or anyway a few fat ones), called sometimes monolith.

At high level, microservices reflect at the architectural level a
culture of autonomy and responsibility in an organization: the
single microservice can be developed and managed independently
by different teams.

* In microservices architectures, the multiple, independent
processes communicate with each other through the network.

Application architectures @

1. MONOLITH 2. MICROSERVICES

(e e e e N N

I} \

. . [[8 Users

\ 8 Users ;)

‘eeecccennees Users Service

= ! — \

= | oo > (E Threads

P L L L —

$ — T TTTT) J/

: @ Posts 1 Threads Service

')

Vemccccccaar
~ . - @ Posts
node.js APl Service

Posts Service

Monoliths vs. microservices INFN

Monolithic Applications [G] Microservices

* Do everything e Each has a dedicated task
* Single application « Minimal services for each
* You havg to distribute the entire function
application e Can be distributed individually

* Single database
» Keep state in each application
instance

* Single stack with a single * Each microservice can adopt its
technology own preferred technology

e Each has its own database
e State is external

Adapted from AWS

An example of a microservice architecture

INFN

* How to structure an e- , Q = -
commerce application = =l

(frO m Mobile app

https://microservices.io/pa
Browser

tterns/microservices.html)

Storefront
WebApp

All good with microservices?

INFN

* Of course not. There are cases when monolithic applications might make
more sense. With microservices, remember that you should:
* Deploy each microservice independently.
* Worry about microservice orchestration.
* Unify the format of software integration and deployment pipelines.
* Compared to monolithic systems, there are more services to monitor.
* Since they form a distributed system, the model is more complex than with monoliths.

* However, with microservices:

* Reliability is much easier, because (for example) if you happen to break one
microservice, you will affect only one part, not the entire app.

* Scalability is much better. With monoliths, horizontal scaling might be impossible and,
when possible, it is connected to scaling the entire app, which is typically inefficient.

Container orchestration

INFN

* We just saw that microservice architectures are based on the composition of
many independent (but communicating) services.

* We therefore need to explore how to effectively orchestrate many containers
across distributed hosts. This is what we call container orchestration.

* Use «container orchestration» to automate and manage tasks such as:
* Provisioning and deployment
e Configuration and scheduling
* Resource allocation
* Container availability

* Scaling or removing containers based on balancing workloads across your
infrastructure

Load balancing and traffic routing

Monitoring container health

Configuring applications based on the container in which they will run
Keeping interactions between containers secure

Docker orchestration tools

Tools of Container Orchestration

Docker Swarm
Amazon ECS DOCKER OPENSOURCE TOOLS

FROM AMAZON Azure Container Services
FROM MICROSOFT

5

Google Container Engine

Kubernetes
FROM GOOGLE CLOUD PLATFORM SOORER RN O URCE TOOEE

°© @ @

CoreOS Fleet iy
FROM COREOS Cloud Foundry's Diego
Mesosphere Marathon FROM CLOUD FOUNDRY

FROM MARATHON

<R

Docker Swarm (1)

INFN

« Docker Swarm is the traditional way of orchestrating containers with
Docker. Compared to other methods we’ll see later, it is relatively easy
to use. Its main features are:

* Cluster management integrated with Docker Engine: no other software than
docker is needed.

* Decentralized design: this means that any node in a Docker Swarm can
assume any role at runtime.

* Scaling: the Swarm manager can automatically scale up and down services,
adding or removing tasks.

* Desired state reconciliation: if something happens to a Swarm cluster (e.g.
some containers crash), the Swarm manager will try to reconcile the state of
the cluster to its desired state (e.g. bringing up some more containers).

Docker Swarm (2)

INFN

e Docker Swarm features, continued:

Multi-host networking: the Swarm manager can handle an overlay network
spanning your services.

Service discovery: there is a DNS server embedded in each Swarm. The
Swarm manager discovers services and assigns to each of them a unique DNS
name.

Load balancing: you can specify how to distribute services among nodes.

Secure by default: the communication among all nodes in a Swarm cluster is
protected by the cryptographic protocol called TLS (Transport Layer Security).

Rolling updates: if anything goes wrong, you can roll-back a task to a previous
version of the service.

Hands-on with Docker Swarm

INFN

o We'll Icv)sely follow https://docs.docker.com/engine/swarm/swarm-
tutorial/.

* For this hands-on, we need three VMs with Docker installed.

* One of these machines will be the manager of the Swarm cluster, the other two will
be called workers.

« We'll use our devopsXX; in order to have 3 VMs, you need to-create-2 new VMs; do
it now and call devopsXX “manager”

* Important: make sure that Docker is installed on all three VMs.

* We also need the IP addresses of the 3 machines involved, as well as the

following open ports for all of them, to allow communication among the
nodes (once you have your 3 VMs, properly set up the security groups):

* TCP port 2377 for cluster management communications.
* TCP and UDP port 7946 for communication among nodes.

* UDP port 4789 for overlay network traffic.

Docker Swarm hands-on: our use case L

* To make things simple and quick, we’ll use a Docker Hub container
called “nginx”

* Nginx is a commonly used web server (see https://nginx.org/en/), like
Apache.

* We'll create a Swarm service based on the nginx container and
deploy it in 5 instances, distributed across 2 VMs (swarm-wnX1 and
swarm-wnX2).

* All these containers will not be directly accessible from the Internet. So, in the
end we’ll have 5 web servers.

* We’ll then deploy a load balancer on a 319 VM (the manager). The
load balancer will be reachable via a public IP address.

* When people hit this IP address, the load balancer will route our requests to
one of the nginx containers on swarm-wnX1 or swarm-wnX2.

Docker Swarm: our architecture

INFN
HTTP qUEr_V __________ GE Remote user
-~

Public network

~
N

I

Load Balancer m
nginx

SwaNan er
\
nginx
nginx
swarm\-wnlj K=ngi: ‘ -wn2j

Swarm cluster

Create a Swarm cluster

INFN

e Login to the VM that should become the “Swarm manager” (the one you
called “manager”=devopsX).

* On the manager, issue the command

* docker swarm init —--advertise-addr <MANAGER-PRIVATE-IP>

* This initializes a Swarm cluster and tells the workers about the IP address of the Swarm
manager. Note that this should be the manager’s private IP address, not the public one.

* Docker answers confirming that the current node is now manager and gives us the
command to add a worker to the Swarm cluster. Note it down.

* Now Jlog in to swarm-wnX1 and swarm-wnX2, and on each of them issue the

command reported above by the manager
* |t should be something like docker swarm join -token <token> <ip addr>:2377

* On the manager, issue the command docker node 1s to view the current
state of the Swarm cluster.

* It should show the manager and the two workers, all in the “active” state. There are no
running services in the cluster yet.

Create a Swarm service

INFN

* We will now create a “service”. We have to define:
* How to name it — we’ll call it “web_swarm”.
* The container image it is based on (nginx, found on DockerHub).
* The port that can be used to contact the service.
* How many replicas of the service we want to deploy.

* This is the command we have to issue on the manager:

docker service create --replicas 3 -p 8082:80 --name web swarm nginx
e With this command, we create 3 docker containers, each one based on the nginx
image.

* These containers will be automatically distributed across our Swarm cluster. Each

container will expose port 80, which will be mapped to port 8082 on a VM host
(swarm-wnl or swarm-wn2).

Check the status of the Swarm service

INFN

* The status of our service can be checked on the manager with
docker service 1s

* |t will take some time before the service is shown as replicated 3 times, as
requested — just repeat the command until it shows 3/3 replicas.

* In order to see where (i.e. on which nodes) the service was
distributed by Swarm, issue this command on the manager:

docker service ps web swarm

* Once you have the 3 web swarm replicas running, log in to either

swarm-wnl or swarm-wn2 and issue this command there:
docker ps

* You should see that one or more nginx containers are running on the node.

How to access the web swarm service

INFN

* Remember that so far, the nodes of the Swarm cluster are only
reachable via their private IP addresses. Therefore, we cannot directly
use a browser to reach the web servers.

* But internally they can be reached (look back at the architectural
diagram). So, log in e.g. to the manager and issue the command
curl http://<private ip address of VM1>:8082/ (or VM?2)
* You should get an answer. Or not?

* Note that you will get an answer even if there is no web swarm container
running on VM1 (or VM2). How can you prove that?

Scaling up or down and draining

INFN

 When we created our service, we specified --replicas 3. If you
want to scale the service to another number of replicas, just issue
this command on the manager:

docker service scale web swarm=7

* What is happening? On the manager, check with
docker service 1ls

docker service ps web swarm

* Now suppose that you want to remove the service web swarm from

e.g. swarm-wn2 (because, for example, you want to shut it down for
any reason). This is called draining a node. Try this:

docker node update —--availability drain <VM2>
* What is happening? Check with docker service ps web swarm.

Load balancing the web servers

INFN

* \We now want to create a load balancer on the manager node.

* Its purpose is to expose a public IP address which will be reachable from the
Internet and balance the queries to that IP address to the web swarm services
that are deployed in the Swarm cluster.

* The same nginx container that we previously used to create web
servers can also be configured to act as Joad balancer. We just need to
have a suitable nginx configuration file.

* In this configuration file, we need to list the IP address (the private IP
addresses, in our use case!) of all the hosts participating to the Swarm cluster.

* That is, the private IP addresses of the manager, swarm-wnl and swarm-wn2.

Create and run the load balancer

INFN

* On the manager, create the following Dockerfile in the same directory

where you have put nginx.conf:
FROM nginx
COPY nginx.conf /etc/nginx/nginx.conf

 \We can now build and then run our container with the load balancer

configuration with commands we already know:
docker build -t load balancer .
docker run -p 8080:80 -d load balancer

* If we now open http://<manager public ip>:8080/, we should get
a web page displayed. Try it out now.
* From which web swarm node is the answer coming? In the nginx.conf file we

told the web server to log some information. Look at this information with the
following command:

docker logs -f <load balancer container>

The nginx configuration for load balancing

INFN

e On the manager, create this file and call it nginx.conf:

worker processes 1;

events { worker connections 1024; }
http {

sendfile on;

upstream swarm cluster {

server <manager 1p addr>:8082;
server <VM1l ip addr>:8082;
server <VMZ ip addr>:8082;

| e

server {
listen 80;
location / {
proxy pass http://swarm cluster;

}

log format upstreamlog '[S$time local] from Sremote addr to Supstream addr';
access log /var/log/nginx/access.log upstreamlog;

}

22

A few notes

INFN

* Docker Swarm services are persistent. Try to shut down all 3 nodes

and then start only the manager. You will see that the manager brings
up all replicas automatically on itself.

* The load balancer configuration, on the other hand, is a stand-alone container
and does not automatically restart.

* Remove a Swarm service with:

docker service rm <service name>

* An interesting point is to combine Docker Swarm with custom Docker
images or with Docker Compose. This is left as an exercise.

Docker Swarm: our architecture

INFN
HTTP qUEr_V __________ GE Remote user
-~

Public network

~
N

I

Load Balancer m
nginx

SwaNan er
\
nginx
nginx
swarrq—wnlj K ngi -wn2j

Swarm cluster

Infrastructure as Code (1)

INFN

* With the idea of Infrastructure as Code (laC), instead of manually
creating the infrastructure we need for our applications (e.g. virtual
machines, disk volumes, installations, configurations), we define what
we want through machine-readable definition files.

* |aC is based on the realization that “Complexity kills Productivity”: it
therefore aims to simplify how you can realize complex infrastructures and
set-ups.

* There are many tools that allow us to combine automation with
virtualization. With 1aC, all the specifications for the infrastructure we
are generating should be explicitly written into configuration files.

Infrastructure as Code (2)

INFN
* Some of the most popular tools for 1aC are Puppet

(https://puppet.com), Ansible (https://www.ansible.com), Terraform
(https://www.terraform.io) and Chef (https://www.chef.io/chef/).

Docker itself provides some form of 1aC.

* While we won’t explore any of these in detail in this course, it is
important to highlight that it is fundamental that whatever you do
with your code and data should be reproducible and manageable.

* You are therefore encouraged to use automated installation and
configuration tools in your work, also because they enable you to
fully profit from the DevOps paradigm we have already seen
(Continuous Integration, Continuous Delivery, Deployment
Orchestration).

26

http://www.chef.io/chef/)

Template-based orchestration

INFN

* There are several templating mechanisms that can be used to
describe and provision resources needed by an application in a Cloud
infrastructure.

* In some sense, this extends what we have seen e.g. with Docker
Swarm to cover any requirements your applications might have and
automatize your deployments in the Cloud.

AWS CloudFormation

INFN

* The Amazon way of defining a complete topology for an application is
through the CloudFormation language.

............... > T L m) D> Q i
©0000 ::‘D:lg

Code your infrastructure Use AWS CloudFormation AWS CloudFormation
from Scr atch with the Check out your template via the browser console, provisions and configures
C[o_udformatlon template language, code locally, or upload it command line tools or APIs the stacks and resources
in either YAML or JSSON ermat, ites 52 biickor to create a stack based you specified on your
or start from many available on your template code template

sample templates

28

TOSCA

INFN

[Topology Model ’E)rchestrated Behaviours (Plansﬁ

* AWS CloudFormation is Amazon-specific. As such, it
can only be used with AWS.

* TOSCA (Topology and Orchestration Specification for

Cloud Applications) is on the other hand a public
standard:

* It is an OASIS (https://www.oasis-open.org/) standard
language to describe a topology of cloud-based web
services, their components, relationships, and the
processes that manage them

* |t standardizes the language to describe:

* The structure of an IT Service (its topology model) .

* How to orchestrate operational behavior (plans such as
build, deploy, patch, shutdown, etc.) .

* A declarative model that spans applications, virtual and
physical infrastructures.

Relationship

29

http://www.oasis-open.org/)

Vision

— Task of a plan refers to interface of a topology node

N e .
\v — Topology node specifies all interfaces offered to manage
o By — Interface is bound to a concrete implementation

...bound to...

+— Implementation already available at providers side, or
- — Implementation is copied from somewhere, or

' // — A standardized Cloud Interface (laas, Paa$, SaaS) is used,

-

\‘,3. Browse :
__-"and Select 1 5. Deploy

anywhere
E
———

SERUCE N - 4. Tools to
. Service Template
Catalog optimize,

A report, etc.

\

-

¥

"™\2. Publish

1. Model Once

Service Template

73

Automation of the release pipelines

INFN

e Strictly related to the microservice architecture is the concept of
DevOps.

* DevOps is a pattern for developing applications where Development

and Operation practices tightly integrate.

* In other words, rather than (1) writing a full “production level” application, (2)
releasing it and then (3) waiting for operational feedback, the DevOps
application release process is much more agile, and it follows tight release and

feedback schedules.

* This is a concept that extends beyond the people who practically do
development and operations. It includes end users as soon as this is possible.

Release early, release often

* The DevOps mantra is
“release early, release often”:
this implies utilizing a set of
tools and processes to
facilitate automation,
monitoring and continuous
integration of all the involved
components (microservices,
for example) to quickly
complete the development
and delivery cycles.

* This is an example of risk
reduction in software
development.

runin

Discover

short cycles

and Speint #I
ey Discover
feedback is “~ Test
frequent, o
\ Nwr
Sprint #3
increasing value o the customer,
“~

encouraging quality,
and ensuring cost effectiveness.

Source: https://medium.com/@warren2lynch/scrum-philosophy-release-early-release-often-a5h864fd62a8

https://medium.com/%40warren2lynch/scrum-philosophy-release-early-release-often-a5b864fd62a8

DevOps

<R

Source: https://nickjanetakis.com/blog/what-is-devops

DevOps benefits

Delivery Pipeline

INFN

BUILD P TEST

> RELEASE

. 4 PLAN &L

MONITOR

L\

YOUR COMPANY

Feedback Loop

* Speed — microservices & continuous
delivery

* Innovate faster
* Better adapt to changing requirements
* Rapid Delivery — continuous
integration and delivery
* Higher release frequency
* Reliability — continuous integration
and delivery, monitoring & logging

* Ensure the quality of application
updates

=
CUSTOMERS

Scale — automation, treat infrastructures as
code

* Operate and manage infrastructures and
development processes at scale

Improved Collaboration
* Less friction, more effective teams

Security - automated compliance policies,
fine-grained controls, configuration
management

* Move quickly but preserve control and
compliance

The DevOps principles

INFN

* DevOps is a comprehensive way of thinking covering all the stages of
an application lifetime.

* It is particularly applicable to distributed, microservices-based
applications, which we typically find in Cloud environments.

* It is therefore important to know its main principles and try to apply
them whenever we write applications, be they small or big. Let’s
now see them in some detail.

Serverless technologies

« Remember that what eventually matters are the applications, not the infrastructure.

<R

* With serverless technologies, we perform another step toward automating and
facilitating writing and using applications and Cloud resources.

* With serverless, a Cloud provider is responsible for executing a piece of code,
written by vou, by dynamically finding and allocating the resources needed by

the code.

* In serverless, your code is typically structured around
a set of stateless functions. Thus, serverless
computing is also called Functions as a Service, or
FaaS. We won’t cover FaaS in detail in this course, but
it is an important concept.

* The running of the serverless functions can be triggered by

some conditions, such as for example database events, file
uploads, scheduled events, various alerts, etc.

e Structuring an app around stateless functions is consistent
with the idea of microservices we have already seen. This
time, however, we focus just on the app code, and deal as
little as possible with resource provisioning and
deployment.

Monolith

Microservice

Microservice

Microservice

|

Microservice

Microservice

https://www.iron.io/

nnnnnn

nnnnnn

nnnnnn

Conclusions

INFN

Container orchestration automates the deployment, management, scaling, and networking of
containers. Anyone that need to deploy and manage hundreds or thousands of Linux containers
and hosts can benefit from container orchestration.

Container orchestration can be used in any environment where you use containers. It can help
you to deploy the same application across different environments without needing to redesign
it. And microservices in containers make it easier to orchestrate services, including storage,
networking, and security.

Containers give your microservice-based apps an ideal application deployment unit and self-
contained execution environment. They make it possible to run multiple parts of an app
independently in microservices, on the same hardware, with much greater control over
individual pieces and life cycles.

Managing the lifecycle of containers with orchestration also supports DevOps teams who
integrate it into Cl/CD workflows. Along with application programming interfaces (APls) and
DevOps teams, containerized microservices are the foundation for cloud-native applications.

