CUPID: Cuore Upgrade with Particle Dentification

Maura Pavan Università di Milano - Bicocca

v oscillations gave us evidence of physics Beyond the Standard Model, now the question is which physics ? what are our expectations for the BSM Theory

we aim at a BSB theory that addresses open questions such as:

- 1. quark & lepton masses (lightness of neutrino mass)
- 2. Matter-Antimatter asymmetry in the Universe
- 3. Dark Matter & Dark Energy

4. ...

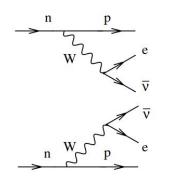
meanwhile we expect to fill a knowledge gap: $\nu \stackrel{\neq}{=} \overline{\nu}$? lepton number is conserved ?

a much appreciated extension of the Standard Model:

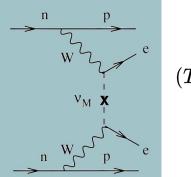
- assumes that $\nu = \overline{\nu}$ (we say neutrinos are Majora particles)
- addresses **1+2** (fermion masses + matter dominated Universe)

the best (experimentally sensitive) way to prove neutrino are Majorana particle is to search for a special nuclear decay:

$$0\nu\beta\beta$$
 (A, Z) \rightarrow (A, Z+2) + 2e⁻


neutrinoless double beta decay

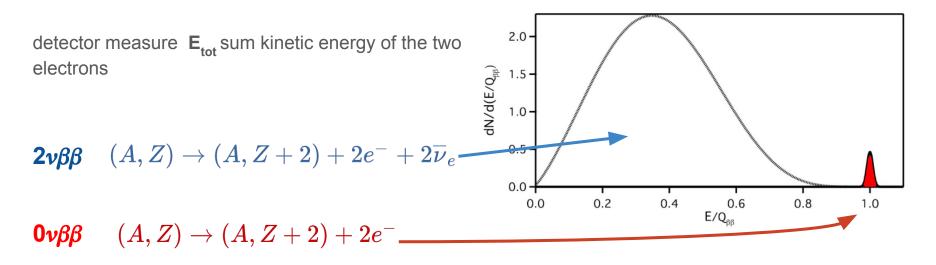
SM compliant $\beta\beta$ -decay


BSM $\beta\beta$ -decay

 $(A, Z) \rightarrow (A, Z+2) + 2e^{-} + 2v_{o}$ $2\nu\beta\beta$

$$\nu\beta\beta$$
 (A, Z) \rightarrow (A, Z+2) + 2e⁻

- we call this 2*v*-mode
- lepton number is conserved
- extremely rare but observed, τ > 10¹⁸ y

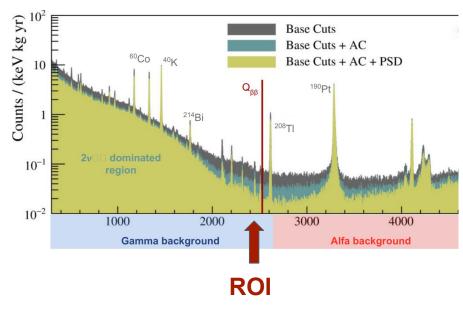

$$(T^{0
u}_{1/2})^{-1} = {G^{0
u}} \cdot |M^{0
u}|^2 \cdot m^2_{ee}$$

- we call this 0*v*-mode
- *A*L=2 process

can proceed with different mechanisms, the dominant is the one where the Fermi description holds but v is a massive Majorana particle that can change its helicity

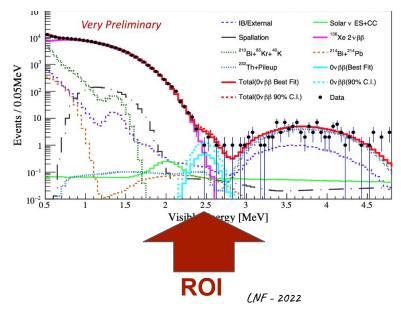
```
• never observed, \tau > 10^{24} y
```

Experimental signature

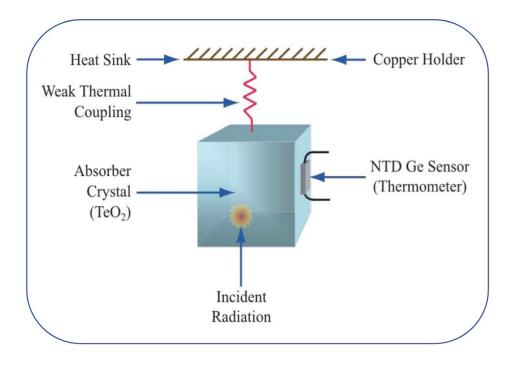


- a peak at $\mathbf{E}_{tot} = \mathbf{Q}_{\beta\beta}$ typically ~ 1-3 MeV
- MeV electrons have a short range the source needs to be embedded in the detector
- high energy resolution implies an incontrovertible identification of the signal

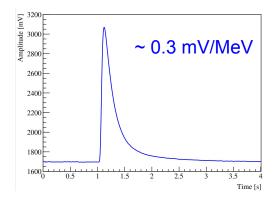
Two experimental approaches


solid state arrays (Ge diodes & bolometers)

CUORE

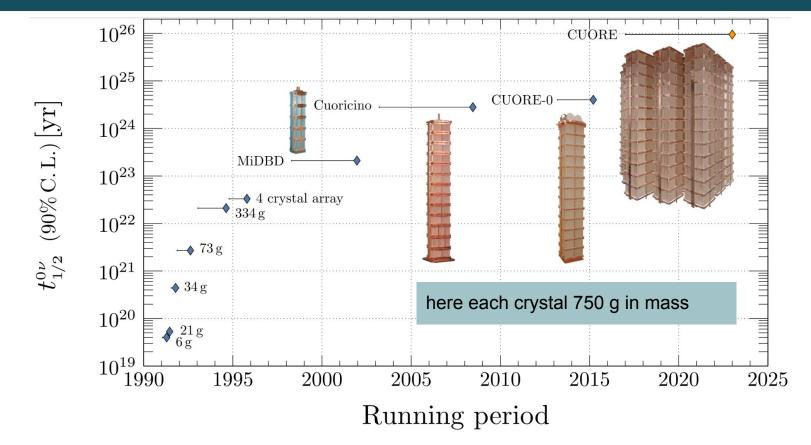

liquid or high pressure gases (scintillators, LXe)

Kamland-ZEN 800

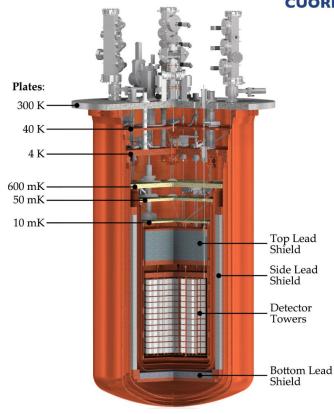


Maura Pavan: CUPID

Cryogenic Particle Detectors or Bolometers



$$R(T)=R_0\cdot e^{(T_0/T)^\gamma}$$



- dielectric crystals ~ 1 kg each
- signal amplitude identical whatever the particle →no particle ID
- FWHM ~ 5 keV at 2.6 MeV

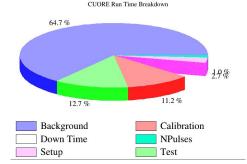
CUORE bolometers

CUORE

CUORE

array of TeO₂ bolometers operated at 10 mK

- $\beta\beta$ candidate embedded in the detector ~ 246 kg ¹³⁰Te
- 988 crystals arranged in 19 towers
- FWHM ~ 7 keV
- no sensitivity to particle id
- target 5 yr sensitivity
 - \circ T_{1/2} > 9.0 x 10²⁵ yr
 - m_{ββ} < 50-130 meV Ο


¹³⁰Te: $Q_{\beta\beta} \sim 2527$ keV $2\nu\beta\beta \tau_{1/2} \sim 8.2 \ 10^{20} \ y$

CUORE successes

1-ton cooled at 10 mK

~65% live-time on physics data

exposure > 1 ton * year


Best fit (global mode)

Fit without 0vBB component

Energy (keV)

----- 90% CI limit on Γ₀

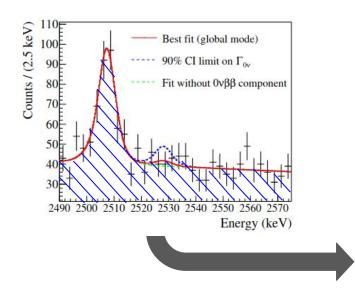
2490 2500 2510 2520 2530 2540 2550 2560 2570

$T_{1/2}^{0v}$ > 2.2 x 10²⁵ yr at 90% C.I.

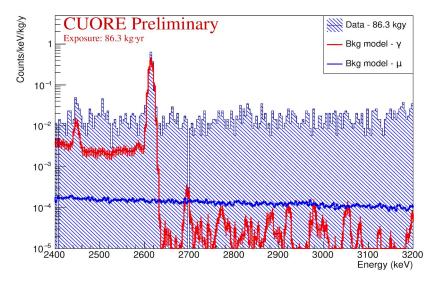
median exclusion sensitivity: $T_{1/2}^{\ \ 0v}$ = 2.8 x 10^{25} yr

 $T_{1/2}^{0v} > 2.2 \text{ x } 10^{25} \text{ yr at } 90\% \text{ C.I.}$

probability to get a more stringent limit given the current sensitivity: 72%.


effect of systematics on $T_{1/2}^{0v} \sim 0.8\%$.

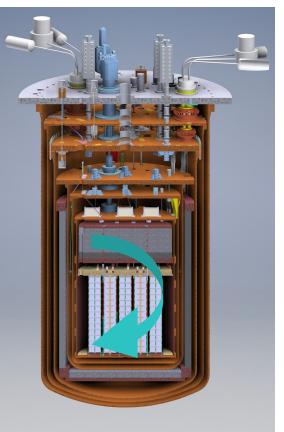
 $m_{\beta\beta}$ < 90 - 305 meV at 90% C.I.


Maura Pavan: CUPID

LNF - 2022

CUORE: what is α particles in

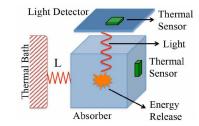
advantages in moving ROI above 2.6 MeV new ${\rm Q}_{_{\beta\beta}}$!


CUPID in a nutshell

→ **replace** the CUORE TeO₂ detector with a new array, based on Li_2MoO_4

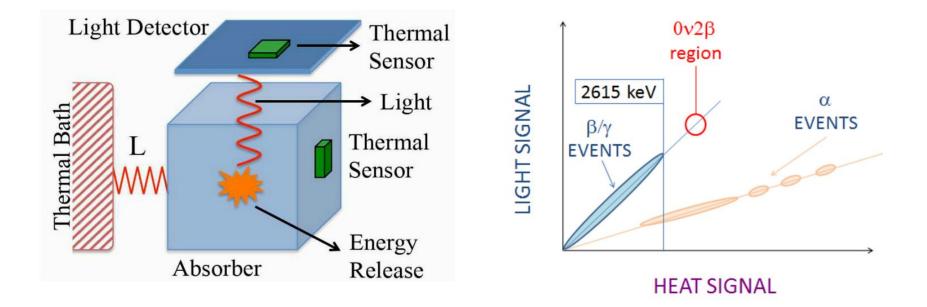
this is enough to take a leap forward in sensitivity because we reduce dramatically the background in the ROI (see next slide)

we put in place two strategies for bkg reduction


- the new ββ candidate ¹⁰⁰Mo has a higher transition energy than the ¹³⁰Te CUORE candidate: less γ-induced background in ROI
- the new detector has a very efficient α particle rejection capability: remove the dominant background source seen in CUORE

CUPID in a nutshell

- **same mass scale** of CUORE: basically we repeat what already done, with improved expertise
- **same cryogenic infrastructure**: quite challenging for CUORE, now an established technology


 the major change is an additional functionality in the single element (particle identification through light read-out)

Maura Pavan: CUPID

CUPID scintillating bolometer

we developed this technology for over 10 years

now it is quite mature and demonstrated by CUPID-0 and CUPID-Mo

Maura Pavan: CUPID

LNF - 2022

Scintillating bolometer technology

 scintillating crystal (typically undoped to avoid excess heat capacity and the radioactivity of rare earths): CaF₂, ZnSe, ZnMoO₄, ... Li₂MoO₄

Crystal - Experiment	Relative Light Yield β / γ	Relative Light Yield α	
ZnSe - CUPID-0	3 - 5 keV/MeV	9 - 14 keV/MeV	
Li ₂ MoO ₄ - CUPID-Mo	0.6 keV/MeV	0.1 keV/MeV	

• **light detector** a bolometer with **eV** energy threshold (to be sensitive to optical photons)

Ge wafer (small mass \rightarrow small heat capacity \rightarrow low energy threshold)

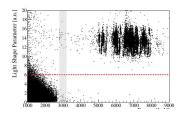
to avoid heat (phonon) transmission from the scintillating crystal to the light detector they can't be in touch with each other \rightarrow **light extracted is very low**

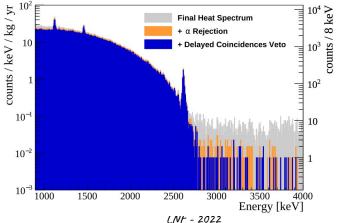
risetime	signal height	baseline noise RMS
1 ms	1 µV/keV _{light}	0.4 µV

example

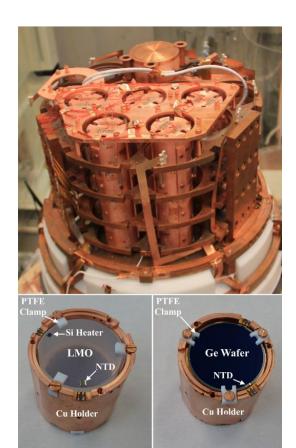
for a 0vbb signal	LMO Heat Signal	LMO Light Signal
signal height	150 µV	1.8 µV/MeV
noise RMS	0.1 µV	0.4 µV

CUPID-0 and α particle rejection


CUPID-0 is the first small scale experiment using scintillating bolometers


- 25 crystals of Zn⁸²Se
- 5.5 kg of ⁸²Se @LNGS Hall A

optimization of scint. bolometer technique


- light detectors
- dual read-out
- analysis
- → first direct prove that flat background is due to alpha particles !

⁸²Se: $Q_{\beta\beta} \sim 3000 \text{ keV}$ $2\nu\beta\beta \tau_{1/2} \sim 8.6 \ 10^{19} \text{ y}$

CUPID-Mo and LMO crystals

CUPID-0 is the first small scale experiment using Li₂¹⁰⁰MoO₄

- crystals Li₂¹⁰⁰MoO₄ (LMO) 2.264 kg of ¹⁰⁰Mo @ Modane
- demonstrator of LMO performances & evaluation of achievable \rightarrow LMO radiopurity

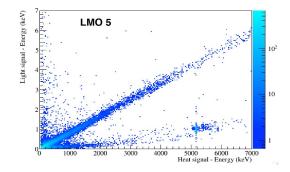
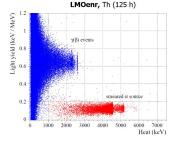


Table 3 Radioactive contamination of Li2¹⁰⁰MoO₄ crystal scintillators. The limits are quoted at 90% C.L.


Chain	Radionuclide		Reference
	190Pt	< 0.003	15
²³² Th	²³² Th	= 0.003	15
	228 Th	< 0.003	16
235 U	²³⁵ U	< 0.005	15
	²³¹ Pa	= 0.003	15
	²²⁷ Ac	< 0.005	15
²³⁸ U	²³⁸ U	< 0.005	15
	²²⁶ Ra	= 0.003	16

[NF - 2022

CUPID

1596 cubic LenrMO crystals 45x45x45 mm

- 450 kg LMO
- 240 kg ¹⁰⁰Mo

CUORE-like structure

- close packed array: 56 towers, each with 14x2 crystals
- minimum amount of inert material in between crystals
- two light detectors for each crystal

Main Detector Requirements

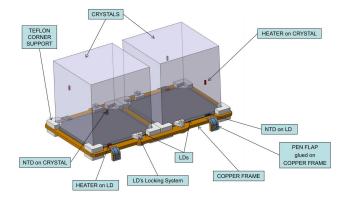
- ★ Heat ch. ~ 5 keV FWHM
- **\star** Light ch. needs to select α 's with >90% efficiency
- ★ Heat+Light need to reject pile-up events in the ROI

goal: bkg counting rate in the ROI ~ 10⁻⁴ counts/keV/kg/yr

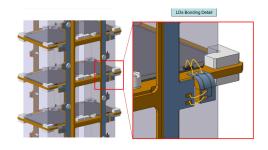
Maura Pavan: CUPID

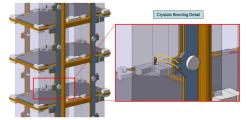
LNF - 2022

Technical Design and on-going activities

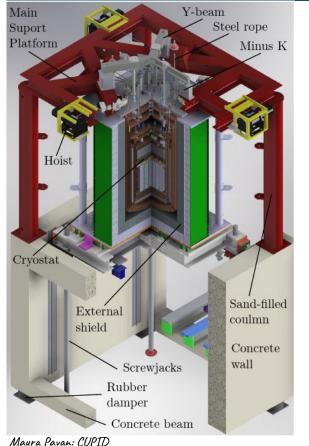

- 1. **isotope & crystal procurement** negotiation will start after full validation of production
- 2. **new design of the detector holder** final validation on a 14x2 crystal tower will start in the next months
- 3. **upgrade of the cryogenic apparatus** R&D on going but upgrade will take place at CUORE end (2016)
- 4. upgrade of external shield system design study
- 5. detector optimization focused on pile-up rejection ongoing

A new concept for the detector holder


the challenges:


- integrate the Light Detector without adding complexity
- address weaks point in CUORE design (e.g. reduce the time needed for the assembly despite the higher number of detectors)
- respect radioactive constraints

the solution: stacked floors without connecting elements


- copper parts have a simpler design
 - easy to produce (laser cut of Cu sheets)
 - easy to clean
 - assembly can be much faster
 - notable relaxation of the tolerances
- better integration of wiring

Maura Pavan: CUPID

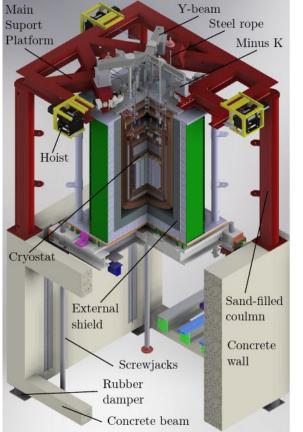
Shields

CUORE shields

- PE 20 cm (moderator) + 3 cm H₃BO₃ (absorber)
- Pb 25 cm
- Roman Pb 6 cm
- no muon veto

muon induced background at LNGS

- mostly prompt events (muon direct interaction and showers)
- both in TeO2 and LMO no delayed events


in CUORE:

detector anti-coincidence is enough for muon background suppression

in CUPID:

we need a further suppression $\rightarrow a$ veto system

Shields

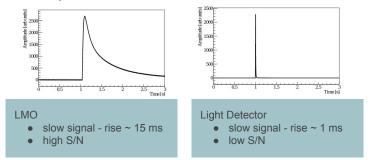
CUPID upgrade

• additional 10-20 cm moderator ?

optimal thickness still under study, main challenge is to validate GEANT simulation

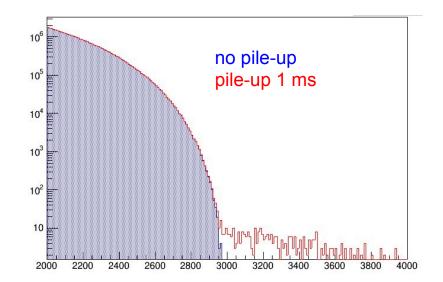
• muon veto with 95-99% tag efficiency

work

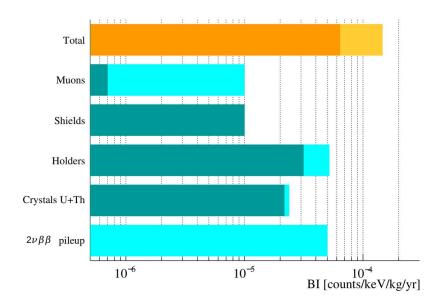

- overall design, not trivial integration in the infrastructure
- integration of muon veto in DAQ and DA

Maura Pavan: CUPID

Pile-up


 $2\nu\beta\beta$ decay rate in a single crystal $\,$ ~ 2.6 mHz $\,$

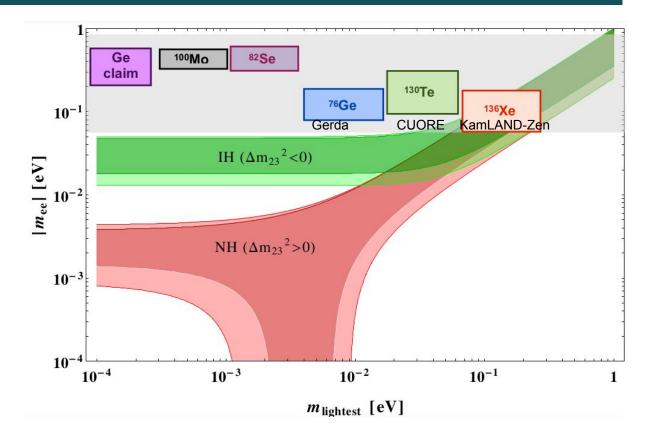
• improving detector timing and S/N

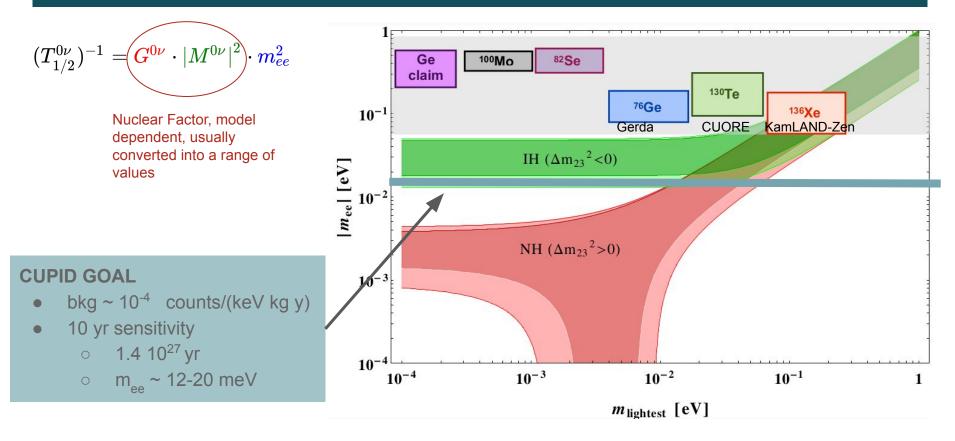

• develop dedicate algorithms to pile-up rejection

⁸²Se:
$$Q_{\beta\beta} \sim 3034$$
 keV
 $2\nu\beta\beta \tau_{1/2} \sim 7.1 \ 10^{18}$ y

Background Model

background model based on previous experiments:

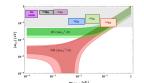

- Shields = cryostat same as in CUORE
- Holders = mainly the surface contamination of Cu
 same as in CUORE
- Crystals = bulk and surface contamination, need to validate on CUPID dedicated production
- $2v\beta\beta$ pile-up = in progress


Majorana mass - present result

$$(T^{0
u}_{1/2})^{-1} = \overbrace{G^{0
u} \cdot |M^{0
u}|^2} \cdot m^2_{ee}$$

Nuclear Factor, model dependent, usually converted into a range of values

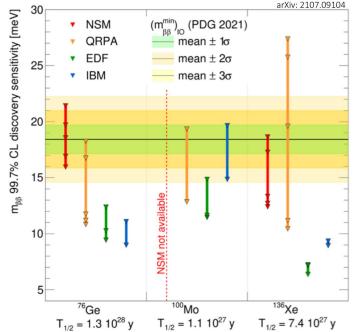
Majorana mass - CUPID sensitivity


Maura Pavan: CUPID

Majorana mass - the competitors

Three experiments in the EU-North America area

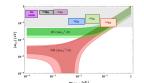
- CUPID @ LNGS
- LEGEND-100 @ LNGS or SNOLab
- n-EXO @ SNOLab


Maura Pavan: CUPID

these 3 experiments were discussed in joint meeting of EU and North America funding agencies in Sept. 2021 at LNGS in order to agree on a coordinate strategy for approval and financing

expected in the near future also KamLAND-Zen @ Kamioka

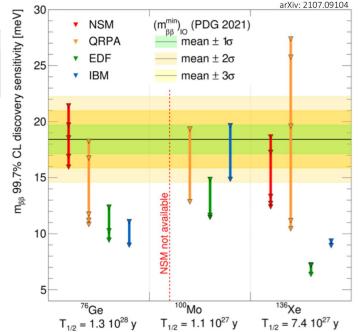
they all leverage on a long history of successes \rightarrow highly credible in their plans


Agostini, Detwiler, Benato, Menendez, Vissani

"Testing the Inverted Neutrino Mass Ordering with 0vßß Decay"

Majorana mass - the competitors

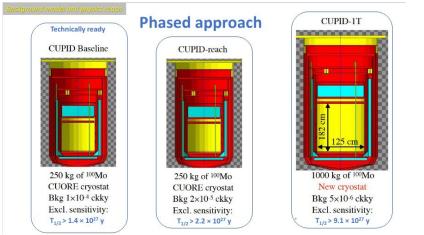
Three experiments in the EU-North America area

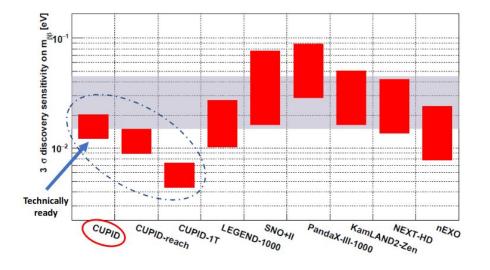

- CUPID @ LNGS
- LEGEND-100 @ LNGS or SNOLab
- n-EXO @ SNOLab

these 3 experiments were discussed in joint meeting of EU and North America funding agencies in Sept. 2021 at LNGS in order to agree on a coordinate strategy for approval and financing

expected in the near future also KamLAND-Zen @ Kamioka

CUPID has two big advantages: same mass scale as CUORE & same infrastructure !


Agostini, Detwiler, Benato, Menendez, Vissani


"Testing the Inverted Neutrino Mass Ordering with 0vßß Decay"

Majorana mass - the future and the far future

among other experiments that could become competitors we have Amore, NEXT, SNO+II ...

for CUPID we have already a viable strategy to go beyond the IH !

thanks for your attention !

LNF - 2022