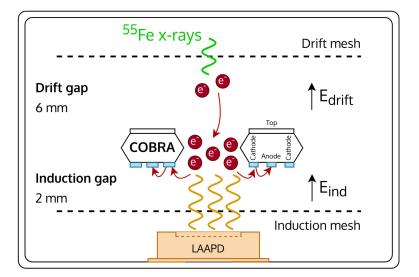
## Using a COBRA\_125 to increase the Light Yield

<u>Rita J. C. Roque</u>, R. Daniel P. Mano, Joaquim M.F. dos Santos, Cristina M.B. Monteiro and Fernando D. Amaro *LIBPhys, Department of Physics, University of Coimbra, 3004-516 Coimbra, Portugal* 

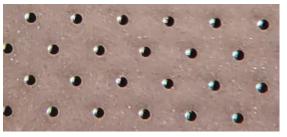



## **Experimental Setup**

We have replaced our 50 µm GEM with a 125 µm COBRA:

- Increased thickness: more robust to electric discharges.
- Third electrode: additional multiplication region in the bottom strips.

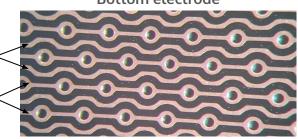
Amaro, F. D., et al. "<u>Operation of a novel large area, high gain, single stage gaseous</u> <u>electron multiplier</u>." Journal of Instrumentation 16.01 (2021): P01033.




Both features of the COBRA\_125 may increase the light yield.

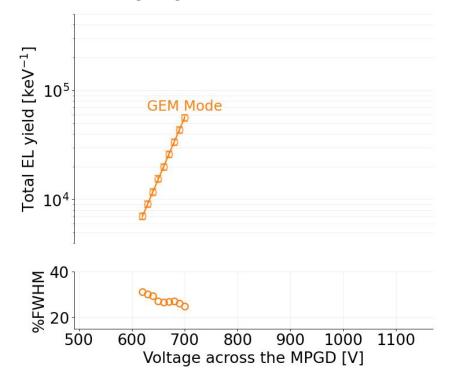
But how much?

GEOMETRYGEMCOBRA\_125Hole spacing140 μm400 μmHole in kapton/<br/>copper50 μm/<br/>70 μm60 μm/<br/>120 μmStrip width &<br/>separation–60 μm


Top electrode

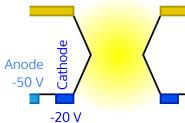


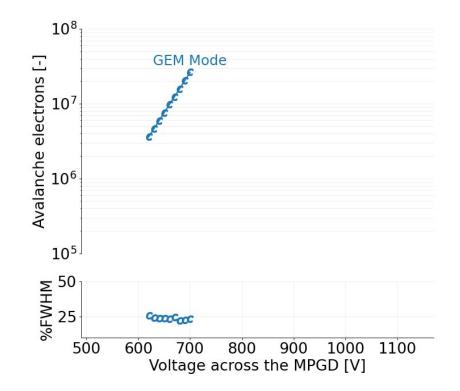
**Bottom electrode** 


Anodes < (between the holes)

Cathodes < (around the holes)




# He-40%CF<sub>4</sub>: GEM Mode


**Light and Charge increases with increasing bias.** Minimum energy resolution (FWHM) is 22% for charge and 24% for light signals.

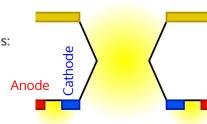


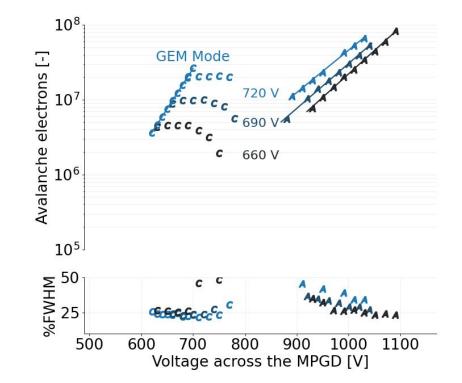
Light is only produced within the holes:

- Hole bias is increased.
- Strip bias is constant.





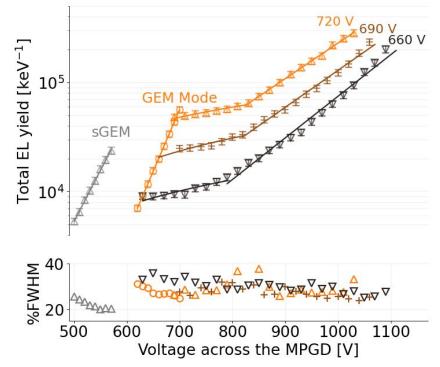

# He-40%CF<sub>4</sub>: Full-COBRA


**Light first increases linearly and then exponentially.** At first, charge is transferred to the anode and then increases exponentially with increasing bias.



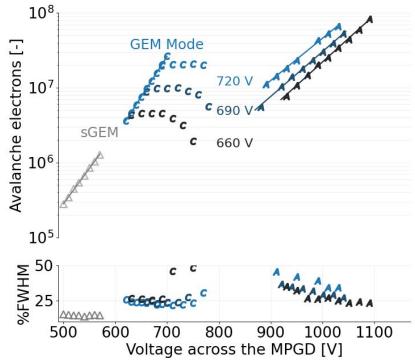
Light is produced in the holes and strips:

- Hole bias is constant.
- Strip bias is increased.



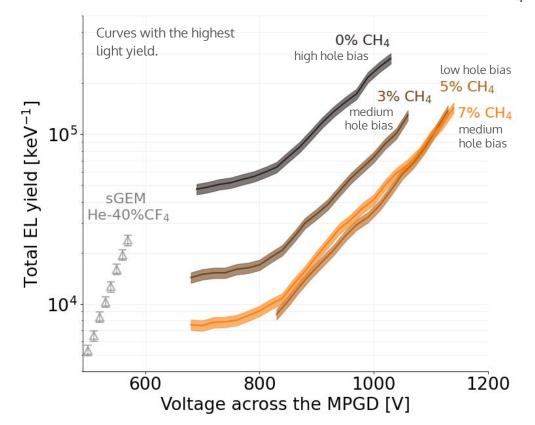



# He-40%CF<sub>4</sub>: Comparison with a standard GEM (sGEM)


The Maximum Light Yield can be increased by

- 2.3-fold (GEM Mode)
- 11.8-fold (full-COBRA Mode)



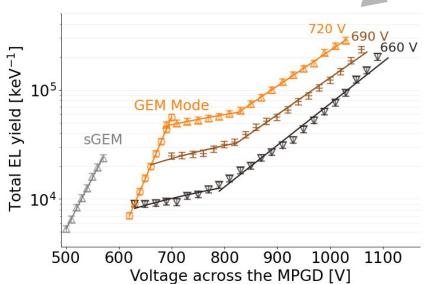

The Maximum Charge can be increased by

- 21.0-fold (GEM Mode)
- 65.4-fold (full-COBRA Mode)



## Methane Admixtures to He-40%CF<sub>4</sub>

We also evaluated the light yield of 3%, 5% and 7% CH<sub>4</sub>.



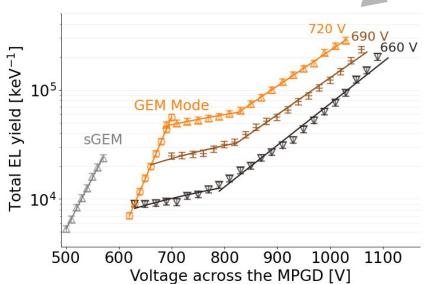

#### Maximum Light Yield for each mixture

| He-40%CF <sub>4</sub> | GEM          | COBRA        |
|-----------------------|--------------|--------------|
| 0% CH <sub>4</sub>    | 2.37(17)x10⁴ | 2.80(20)x10⁵ |
| 3% CH <sub>4</sub>    | 3.90(28)x10⁴ | 1.30(9)x10⁵  |
| 5% CH4                | 3.09(22)x10⁴ | 1.38(10)x10⁵ |
| 7% CH <sub>4</sub>    | 2.41(17)x10⁴ | 1.43(10)x10⁵ |

The light yield of CH<sub>4</sub> admixtures with a COBRA\_125 is about **6 times higher** than the light yield of He-40%CF4 with a sGEM.

#### Conclusions




With a COBRA\_125, the light yield of methane admixtures is 6 times higher than the light yield of He-40%CF<sub>4</sub> produced with a standard GEM.

The light yield can be increased 11.8-fold in He-40%CF<sub>4</sub> with a COBRA\_125 due to:

- The thickness of the COBRA (125 µm): increases the threshold for self-sustained micro-discharges.
- The second multiplication region: additional light is created in the strips.



#### Conclusions



With a COBRA\_125, the light yield of methane admixtures is 6 times higher than the light yield of He-40%CF<sub>4</sub> produced with a standard GEM.

The light yield can be increased 11.8-fold in He-40%CF<sub>4</sub> with a COBRA\_125 due to:

- The thickness of the COBRA (125 µm): increases the threshold for self-sustained micro-discharges.
- The second multiplication region: additional light is created in the strips.



# Grazie per l'attenzione Any questions or suggestions?



R. Roque acknowledges the FCT PhD studentship (ref. SFRH/BD/143355/2019).