EL yield of He-CF₄-CH₄ mixtures <u>Rita J. C. Roque</u>, R. Daniel P. Mano, Joaquim M.F. dos Santos, Cristina M.B. Monteiro and Fernando D. Amaro *LIBPhys, Department of Physics, University of Coimbra, 3004-516 Coimbra, Portugal* ### Experimental Setup x-rays peak ratio We have placed a **borosilicate glass** window (filter) to **cut off the VUV-UV photons** and evaluate the EL emission in the spectral range from **300 - 1000 nm**. quantum efficiency, solid angle, mesh transparency The following are preliminary results. Not calibrated. ## He-40%CF₄+CH₄ mixtures #### Visible EL 300 nm - 1000 nm ### Charge readout Adding CH₄ increases the sparking threshold relative to He-40%CF4: we can apply +40V across the GEM before the onset of self-sustained discharges. Adding CH_4 produces more secondary electrons relative to $He-40\%CF_4$ although for the same V_{GEM} the number of avalanche electrons decreases with increasing CH_4 content. CH₄ does not degrade the energy resolution of the charge signals: the minimum energy resolution is around 14% for all mixtures. #### Visible EL 300 nm - 1000 nm # He-40%CF₄+CH₄ mixtures #### EL readout Adding CH₄ increases the maximum EL yield relative to He-40%CF₄: for 3%, 4% and 5% CH₄, the maximum EL yield is higher than the one measured for the base mixture. | | Max. EL amplitude | |---------|--------------------------| | 0% CH4 | 596.3 | | 3% CH4 | 860.6 +44% | | 4% CH4 | 766.0 +28 % | | 5% CH4 | 760.4 +26% | | 7% CH4 | 535.3 -10% | | 10% CH4 | 454.2 - <mark>24%</mark> | ## He-60%CF₄+CH₄ mixtures #### Visible EL 300 nm - 1000 nm ### Charge readout Adding CH₄ increases the sparking threshold relative to He-60%CF4: we can apply +10V across the GEM before the onset of self-sustained discharges. Adding CH_4 produces more secondary electrons relative to $He-60\%CF_4$ although for the same V_{GEM} the number of avalanche electrons decreases with increasing CH_4 content. CH₄ degrades slightly the energy resolution of the charge signals: for He-60%CH₄, the minimum energy resolution is 15%, while for 4% and 10% CH₄, this value increases to 16%. # He-60%CF₄+CH₄ mixtures #### EL readout Adding CH₄ to He-60%CF₄ increases the maximum EL yield relative to He-40%CF₄: for all He-60%CF₄ based mixtures, the maximum EL yield is higher than the one measured for He-40%CF₄. | | Max. EL amplitude | |-----------|-------------------| | He-40%CF4 | 596.3 | | He-60%CF4 | 1544.4 +159% | | + 4% CH4 | 1161.2 +95% | | + 10% CH4 | 643.4 +8% | Minimum energy resolution is around 20% for 0% and 4% CH_4 . For 10% CH_4 this value increases to 23%. ### Comparing CH₄ to isobutane admixtures Adding up to 5% CH₄ to He-40%CF₄ increases the maximum attainable EL yield in fact, adding CH_4 to $He-40\%CF_4$ is even better than compensating the isobutane quenching with $60\%CF_4$. In terms of EL yield, CH₄ seems to be a better alternative than isobutane. #### **Future Plans:** - Calibrate the visible EL results for calculating absolute EL yield values; - Measure the total EL yield (UV+visible) of CH₄ admixtures to double-check our results. # Grazie per l'attenzione Any questions or suggestions?