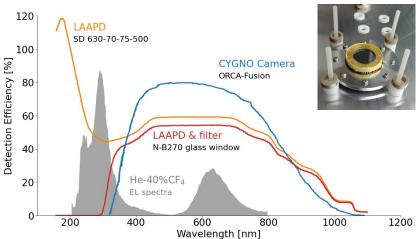
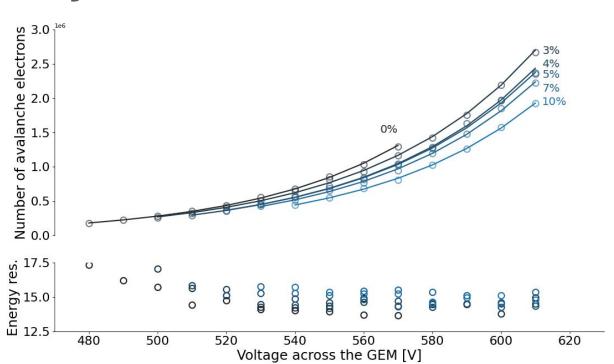

EL yield of He-CF₄-CH₄ mixtures

<u>Rita J. C. Roque</u>, R. Daniel P. Mano, Joaquim M.F. dos Santos, Cristina M.B. Monteiro and Fernando D. Amaro *LIBPhys, Department of Physics, University of Coimbra, 3004-516 Coimbra, Portugal*



Experimental Setup

x-rays peak ratio We have placed a **borosilicate glass** window (filter) to **cut off the VUV-UV photons** and evaluate the EL emission in the spectral range from **300 - 1000 nm**.


quantum efficiency,

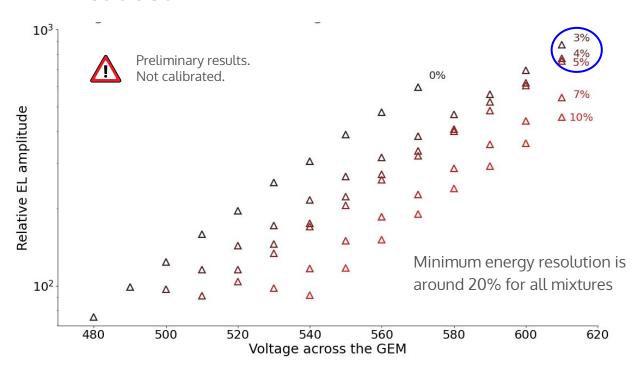
solid angle, mesh transparency The following are preliminary results. Not calibrated.

He-40%CF₄+CH₄ mixtures

Visible EL 300 nm - 1000 nm

Charge readout

Adding CH₄ increases the sparking threshold relative to He-40%CF4: we can apply +40V across the GEM before the onset of self-sustained discharges.

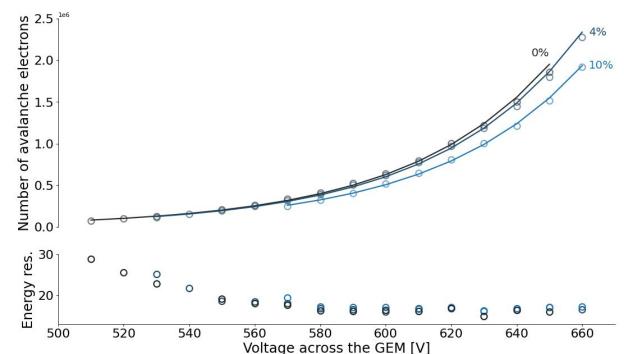

Adding CH_4 produces more secondary electrons relative to $He-40\%CF_4$ although for the same V_{GEM} the number of avalanche electrons decreases with increasing CH_4 content.

CH₄ does not degrade the energy resolution of the charge signals: the minimum energy resolution is around 14% for all mixtures.

Visible EL 300 nm - 1000 nm

He-40%CF₄+CH₄ mixtures

EL readout


Adding CH₄ increases the maximum EL yield relative to He-40%CF₄: for 3%, 4% and 5% CH₄, the maximum EL yield is higher than the one measured for the base mixture.

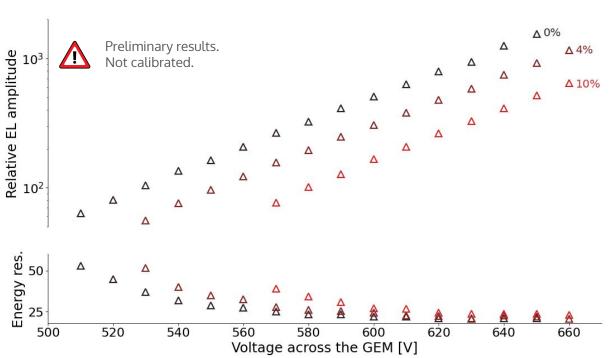
	Max. EL amplitude
0% CH4	596.3
3% CH4	860.6 +44%
4% CH4	766.0 +28 %
5% CH4	760.4 +26%
7% CH4	535.3 -10%
10% CH4	454.2 - <mark>24%</mark>

He-60%CF₄+CH₄ mixtures

Visible EL 300 nm - 1000 nm

Charge readout

Adding CH₄ increases the sparking threshold relative to He-60%CF4: we can apply +10V across the GEM before the onset of self-sustained discharges.


Adding CH_4 produces more secondary electrons relative to $He-60\%CF_4$ although for the same V_{GEM} the number of avalanche electrons decreases with increasing CH_4 content.

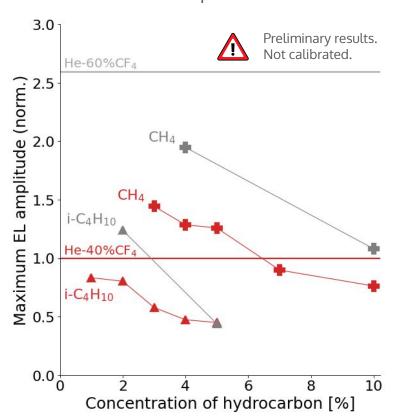
CH₄ degrades slightly the energy resolution of the charge signals: for He-60%CH₄, the minimum energy resolution is 15%, while for 4% and 10% CH₄, this value increases to 16%.

He-60%CF₄+CH₄ mixtures

EL readout

Adding CH₄ to He-60%CF₄ increases the maximum EL yield relative to He-40%CF₄:

for all He-60%CF₄ based mixtures, the maximum EL yield is higher than the one measured for He-40%CF₄.


	Max. EL amplitude
He-40%CF4	596.3
He-60%CF4	1544.4 +159%
+ 4% CH4	1161.2 +95%
+ 10% CH4	643.4 +8%

Minimum energy resolution is around 20% for 0% and 4% CH_4 . For 10% CH_4 this value increases to 23%.

Comparing CH₄ to isobutane admixtures

Adding up to 5% CH₄ to He-40%CF₄ increases the maximum attainable EL yield

in fact, adding CH_4 to $He-40\%CF_4$ is even better than compensating the isobutane quenching with $60\%CF_4$.

In terms of EL yield, CH₄ seems to be a better alternative than isobutane.

Future Plans:

- Calibrate the visible EL results for calculating absolute EL yield values;
- Measure the total EL yield (UV+visible) of CH₄ admixtures to double-check our results.

Grazie per l'attenzione Any questions or suggestions?

