(Charged) Lepton Flavor Violation searches

INTENSE annual workshop

Gianantonio Pezzullo Yale University

- **CLFV** limits \bullet
- Mu₂e competitors •
- Tau rare decays \bullet
- Higgs LFV searches •

Outline

Flavor Violation

- We've known for a long time that quarks mix
 - ✓ Mixing strengths parameterized by Vскм

• In last 15 years also neutrinos (neutral leptons) mixing was measured

Mixing strengths parameterized by PMNS matrix

Is there violation for charged leptons?

CLFV limits

Process	Experiment	Limit	C.L.
$\mu^+ ightarrow e^+ \gamma$	MEG	$4.2 imes 10^{-13}$ [99]	90%
$\mu^{\pm} ightarrow e^{\pm}e^{-}e^{+}$	SINDRUM	$1.0 imes 10^{-12}$ [133]	90%
$\mu^- N \rightarrow e^- N$	SINDRUM-II	$6.1(7.1) imes 10^{-13}$ Ti (Au) [47,134]	90%
$\mu^- \mathrm{N} ightarrow e^+ \mathrm{N}'$	SINDRUM-II	5.7×10^{-13} [135]	90%
$ au \pm ightarrow e^{\pm} \gamma$	BaBar	$3.3 imes 10^{-8}$ [136]	90%
$ au^\pm o \mu^\pm \gamma$	BaBar	$4.4 imes 10^{-8}$ [136]	90%
au ightarrow eee	Belle	$2.7 imes 10^{-8}$ [137]	90%
$ au o \mu \mu \mu$	Belle	$2.1 imes 10^{-8}$ [137]	90%
$ au o \mu ee$	Belle	$1.8 imes 10^{-8}$ [137]	90%
$ au o e \mu \mu$	Belle	$2.7 imes 10^{-8}$ [137]	90%
$ au o \pi^0 e$	Belle	$8.0 imes 10^{-8}$ [138]	90%
$ au o \pi^0 \mu$	BaBar	1.1×10^{-7} [139]	90%
$ au o \eta e$	Belle	9.2 × 10 ⁻⁸ [138]	90%
$ au o \eta \mu$	Belle	$6.5 imes 10^{-8}$ [138]	90%
$ au o ho^0 e$	Belle	$1.8 imes 10^{-8}$ [140]	90%
$ au o ho^0 \mu$	Belle	1.2×10^{-8} [140]	90%
$h ightarrow \mu e$	ATLAS	$6.1 imes 10^{-5}$ [66]	95%
h ightarrow au e	CMS	$2.2 imes 10^{-3}$ [67]	95%
$h ightarrow au \mu$	CMS	$1.5 imes 10^{-3}$ [67]	95%

G. Pezzullo (Yale University)

CLFV limits

Process	Experiment	Limit	C.L.
$\mu^+ ightarrow e^+ \gamma$	MEG	$4.2 imes 10^{-13}$ [99]	90%
$\mu^{\pm} ightarrow e^{\pm}e^{-}e^{+}$	SINDRUM	$1.0 imes 10^{-12}$ [133]	90%
$\mu^- N \rightarrow e^- N$	SINDRUM-II	$6.1(7.1) \times 10^{-13}$ Ti (Au) [47,134]	90%
$\mu^- N ightarrow e^+ N'$	SINDRUM-II	5.7 × 10 ⁻¹³ [135]	90%
$ au\pm ightarrow e^\pm \gamma$	BaBar	3.3 × 10 ⁻⁸ [136]	90%
$ au^{\pm} ightarrow \mu^{\pm} \gamma$	BaBar	$4.4 imes 10^{-8}$ [136]	90%
au ightarrow eee	Belle	2.7 × 10 ⁻⁸ [137]	90%
$ au o \mu \mu \mu$	Belle	$2.1 imes 10^{-8}$ [137]	90%
$ au o \mu ee$	Belle	$1.8 imes 10^{-8}$ [137]	90%
$ au o e \mu \mu$	Belle	$2.7 imes 10^{-8}$ [137]	90%
$ au o \pi^0 e$	Belle	$8.0 imes 10^{-8}$ [138]	90%
$ au o \pi^0 \mu$	BaBar	1.1×10^{-7} [139]	90%
$ au o \eta e$	Belle	9.2 × 10 ⁻⁸ [138]	90%
$ au o \eta \mu$	Belle	$6.5 imes 10^{-8}$ [138]	90%
$ au o ho^0 e$	Belle	$1.8 imes 10^{-8}$ [140]	90%
$ au o ho^0 \mu$	Belle	$1.2 imes 10^{-8}$ [140]	90%
$h ightarrow \mu e$	ATLAS	$6.1 imes 10^{-5}$ [66]	95%
h ightarrow au e	CMS	$2.2 imes 10^{-3}$ [67]	95%
$h ightarrow au\mu$	CMS	$1.5 imes 10^{-3}$ [67]	95%

G. Pezzullo (Yale University)

Already reviewed

Zoom - February 3 2022

Mu2e competitors

- Process : $\mu^- + (A,Z) \rightarrow e^- + (A,Z)$
- A single mono-energetic electron
 - 105 MeV Proton •
 - Delayed : $\sim 1\mu S$
- No accidental backgrounds
- Physics backgrounds
- (Muon Decay in Orbit (DIO)
 - $E_e > 102.5 \text{ MeV} (BR:10^{-14})$
 - $E_e > 103.5 \text{ MeV} (BR:10^{-16})$

– Beam Pion Capture

- $\pi^-+(A,Z) \rightarrow (A,Z-1)^* \rightarrow \gamma+(A,Z-1)$ $\nu \rightarrow e^+ e^-$
- Pulsed Proton beam
 - Prompt timing

DeeMe experiment

 Low Energy main part: suppressed by the beamline.

• High Energy tail: Magnet Spectrometer ($\Delta p <$ 0.5%)

 Main pulse burst: State-of-the-art MWPC that becomes operational quickly after a burst. Delayed-protons: Suppressed owing to the extremely small after-protons from RCS -- $R_{DP} < <10^{-17}$.

COMET

A detector to search for muon-to-electron conversion

Tau channels

Tau channels

 \bullet tau mass (mT \approx 1.777 GeV), many CLFV channels can be investigated

G. Pezzullo (Yale University)

The tau lepton is in principle a very promising source of CLFV decays. Thanks to the large

90% CL upper limits on τ LFV decays

- Final state: pair of light lepton and a photon, with minv = tau_mass \bullet
- Searches implemented at B-factories: Belle and BaBar
- Main background: $e^+e^- \rightarrow e^+e^-\gamma$, $e^+e^- \rightarrow \mu^+\mu^-\gamma$, tau mis-identification \bullet

 $\tau \rightarrow l\gamma$

- BaBar collected (963 \pm 7) × 10⁶T decays near the Y(4S), Y(3S) and Y(2S) resonances
- Signal decays are identified by two kinematic vars: (i) the energy difference $\Delta E = E \sqrt{s/2}$ and the beam energy constrained τ mass obtained from a kinematic fit
- **Limits**: 3.3(4.4)x10⁻⁸ for the electron (muon) channel \bullet

$\tau \rightarrow l\gamma (0) BaBar$

- The Belle experiment reported comparable limits using a data analysis based on 988 fb-I Limits: 5.6(4.2)x10⁻⁸ for the electron (muon) channel \bullet

G. Pezzullo (Yale University)

$\tau \rightarrow l\gamma (a)$ Belle

- Final state: three charged leptons with minv = tau mass and sum charge = 1
- Searches implemented at B-factories: Belle and BaBar in all the 6 combinations
- Events are selected looking for $\tau + \tau pairs$ in the final state (one tau i used as tag) \bullet

$\tau \rightarrow 3l$

- The polar angles of all four tracks in the laboratory frame are required to be within the \bullet calorimeter acceptance range, to ensure good particle identification
- The search strategy consists of forming all possible triplets of charged leptons with the required total charge and of looking at the distribution of events in the (mBC, ΔE) plane
- The backgrounds contaminating the sample can be divided in three broad categories:
 - low multiplicity qq events, \bullet
 - QED events (Bhabha or $\mu+\mu-$ depending on the specific channel)
 - SM $\tau + \tau -$ events
- Limits: at the level of $\sim 10^{-8}$

$\tau \rightarrow 3l$

- The ATLAS experiment performed a search for the neutrinoless decay $\tau^- \to \mu^+ \mu^- \mu^ \bullet$ using a sample of $W^- \rightarrow \tau^- \bar{\nu} \tau$ decays with 20.3 fb-1 collected in 2012 @ 8 TeV
- The LHCb experiment performed the same search using a sample of tau from b and chadron decays with 3.0 fb-1 collected in 2011(2) @ of 7(8) TeV
- The CMS experiment recently delivered the results for the same search using a sample of T leptons produced in both W boson and heavy-flavor hadron decays using 33.2fb-I
- ATLAS, CMS and LHCb reported a 90% C.L. upper limit on the branching ratio of 3.76 × 10^{-7} , 8.0 × 10^{-7} and 4.6 × 10^{-7} respectively

$\tau \rightarrow 3l (0) LHC$

Experiments at the LHC also searched for the $\tau \rightarrow 3l$ decay in the case where I = μ

Higgs searches

- **Muons** provide strong limits on LFV Higgs decays for 1st and 2nd generations
- But not if tau involved: Ist-3rd or 2nd-3rd

G. Pezzullo (Yale University)

Constrains on Higgs

- Similar final states as in $H \rightarrow \tau \tau$: search for $H \rightarrow e \tau$ and $H \rightarrow \mu \tau$ \bullet

CLFV at CMS & ATLAS

• 95% C.L. limits from likelihood fit are $Br(H \rightarrow e\tau) < 0.47\%$ and $Br(H \rightarrow \mu\tau) < 0.25\%$

G. Pezzullo (Yale University)

• $H \rightarrow \mu \tau < (0.15)\%$ @ 95% C.L. (CMS)

H→eτ < (0.22)% @ 95% C.L. (CMS)

LHC/Direct searches

- A short review of non-muonic LFV searches was given
- Tau rare decays and Higgs decays offer powerful tool to search for LFV processes
- The upgrade of the B-factories will enable an improvement in the tau->3 I search
 - LHC experiments are getting competitive in the pure muonic final state
- The Higgs portal provide powerful proves for LFV search in the (I, tau) final states

Summary

