

(Anti)matter propagation in the Galaxy

ALMA MATER STUDIORUM Università di Bologna

Nicolò Masi – 13/01/2022

Explaining Z ≤ 28 CRs physics by means of GALPROP and HelMod

- AMS-02 published data are fitted in the combined framework of GALPROP and HelMod (for Galactic and Heliosphere propagation, respectively) with a single model, capable of reproducing all primary and secondary spectra at the same time (*see* ApJ 840:115 No 2, 2017; ApJ 854:94 No 2, 2018; ApJ 858:61 No 1, 2018; ApJ 889:167, 2020, ApJS 250 27, 2020, ApJ 913 5 (2021));
- The 28 proposed LISs fit Voyager 1, ACE, Pamela, AMS-02 (and many other experiments) and recent CALET and DAMPE data, from 10 MeV/n up to 200 TeV/n, representing a reference model for the Collaboration and a forecasting tool for astroparticle and solar physics;
- The overall model has a strong **prediction capability** for what concerns the resulting cosmic rays **antimatter content**, especially antiprotons.

The Propagation Scheme in the Milky Way

MCMC Matrix Approach

M. Boschini, S. della Torre, N. Masi, I. Moskalenko, L. Quadrani, P.G. Rancoita *et al.,* Solution Of Heliospheric Propagation: Unveiling The Local Interstellar Spectra Of Cosmic Ray Species, The Astrophysical Journal **840**:115 No 2, 2017, arXiv:1704.06337

- .. The Monte-Carlo-Markov-Chain interface to GALPROP v56 was developed in Bologna from CosRay-MC and COSMOMC package, embedding GALPROP framework into the MCMC scheme;
- 2. The simulations run on Ravenna pc farm;
- 3. The solar modulation is made using **HelMod**;
- The experimental observables used in the MCMC scan include all primary CRs AMS-02 data and B/C ratio.

One order of magnitude of improvement for fundamental parameters uncertainties

Updated secondary over primary ratio: B/C

Diffusive break case

New AMS-02 Z>8 Nuclei

AMS-02 data from PHYSICAL REVIEW LETTERS 124, 211102 (2020)

Per cent/few per cent level precision

The Model confirms its prediction capability for all AMS-02 species with a single set of parameters

Primary Lithium from Novae/Wolf Rayet stars is mandatory to explain AMS-02 measurement

the observed stellar lithium abundances indicate that some proportion of lithium is also produced in lowmass stars and nova explosions. Indeed, the alpha-capture reaction of ⁷Be production ³He(α, γ)⁷Be was proposed a while ago (Cameron 1955; Cameron & Fowler 1971). A subsequent decay of ⁷Be with a half-life of 53.22 days yields ⁷Li isotope. To ensure that produced ⁷Li is not destroyed in subsequent nuclear reactions, ⁷Be should be transported into cooler layers where it can decay to ⁷Li, the so-called Cameron-Fowler mechanism.

Recent observation of blue-shifted absorption lines of partly ionized ⁷Be in the spectrum of a classical novae V339 Del about 40-50 days after the explosion (Tajitsu et al. 2015) is the first observational evidence that the mechanism proposed in 1970s is working indeed (Hernanz 2015).

Injection versus Propagation scenarios to explain CRs hardening above 300 GV

Extension of AMS-02 based LISs for p and He up to tens (and hundreds) TeV/n with CALET and DAMPE

Aluminum forecasting!

Full knowledge of CR abundances: Source vs Propagated

AMS – Voyager1 interplay

Voyager 1 in the interstellar space

Voyager 1 131.0 AU 19.7 billion km

Voyager 2 107.7 AU 16.2 billion km ~2 years to interstellar space?

Launched in 1977!

Simulated proton and He LISs have been successfully compared to Voyager1

Interstellar spectra measured by Voyager-1

All Z ≤ 28 are well reproduced

Our website provides numerical LISs, analytical formulas and plots

Ø-

LISs will be futher fine-tuned and updated on the website using incoming AMS-02 measurements

2020-2021 Achievements

- $\checkmark~$ All cosmic rays species with Z \leq 28 predicted with GALPROP plus HelMod
- ✓ General reference framework for astroparticle community
- ✓ Extension of LISs validity up to 100 TeV/n scale
- ✓ Study of high mass nuclei, abundances and possible anomalous secondaries
- ✓ Iron spectrum and its fine features
- ✓ High mass primary/half-primary (Na-Al) and secondaries (Fluorine)
- ✓ Iron/sub Iron predictions and study of the past SNe activity in the solar neighborhood with Iron isotopes
- ✓ Fundamental propagation mechanisms tests: injection vs diffusive breaks scenarios, possible nearby sources....
- ✓ Isotopes physics (deuterium, Li, Be, B...- ongoing)

So we are touching the «cross section wall»

Antiprotons

The Antiproton LIS is substantially compatible with AMS-02 within 2σ .

Discrepancies w.r.t. AMS-02 high precision data could be due to:

- nuclear cross section uncertainties
- peculiar propagation effects or variation of primary p and He spectra in the Galaxy
- eventually, DM annihilation in the galactic halo (60-90 GeV or 200-400 GeV mass DM)

Low energy DM candidates

FIG. 4: Best fit regions $(1, 2 \text{ and } 3\sigma)$ for a DM component of the antiproton flux, and limits on the DM annihilation cross-section into $b\bar{b}$ final states. The grey shaded uncertainty band is obtained from the envelope of the various fits presented in FIG. 3. For comparison we show limits on the annihilation cross-section obtained from gamma-ray observations of dwarf galaxies [49, 51], and the thermal value of the annihilation cross-section, $\langle \sigma v \rangle \approx 3 \times 10^{-26} \text{ cm}^3 \text{s}^{-1}$.

Phys. Rev. Lett. 118, 191102 (2017)

Antip/p Ratio and search for anomalies

- In standard GALPROP: analytic parameterizations from Tan & Ng based on 70's data: PRD 26 (1982) 1179; J.Phys.G:Nucl Phys 9 (1983) 227
- Moskalenko has recently recalculated the p
 p production in pp/pA/AA-interactions using EPOS-LHC and QGSJET-II-04 MC generators, tuned to accelerator data (ApJ, 803:54, 2015)

Astrophysical Uncertainty

With the AMS-02 based propagation scheme and the MCMC approach we compute \bar{p}/p astrophysical uncertainties (remembering that z-D0 ratio is basically fixed by B/C)

Nuclear uncertainty band for pp collisions

From NA49+BRAHMS analysis

Total uncertainty band (astro&Donato) + DM DarkSUSY simulations

BETTER CANDIDATES: m > 1 TeV, 0.6 TeV < m < 1 TeV and $\langle \sigma v \rangle < 10^{-25} cm^3/s$

500 GeV, 10⁻²⁵ cm³ s⁻¹, WW antip/p Ratio total band 600 GeV, 6∗10⁻²⁶ cm³ s⁻¹, WW 1. × 10⁻⁴ — 700 GeV, 10⁻²⁵cm³ s⁻¹, WW 900 GeV, 2∗10⁻²⁵cm³ s⁻¹, WW preliminar 5. × 10⁻⁵ 1000 GeV, 3*10⁻²⁵cm³ s⁻¹, bb 1500 GeV, 3∗10⁻²⁵cm³ s⁻¹, bb 2000 GeV, 3*10⁻²⁵ cm³ s⁻¹, WW — 4000 GeV, 10⁻²⁴cm³ s⁻¹, bb 5000 GeV, 6*10⁻²⁵ cm³ s⁻¹, WW 1. × 10⁻⁵ 10 50 100 500 5 Rigidity (GV)

- AMS-02 results are compatible with a secondary production but DM signals could in principle still hide within the overall error band.
- With the nuclear measurements effort we will be capable of extracting a possible DM signal.

Nuclear uncertainties in the antiproton channel

 $p + ISM \rightarrow \bar{p} \dots = \begin{cases} p + p_{ISM} \rightarrow \bar{p} \dots & \text{Poor measurements (for the comparison of and SHINE data)} \\ p + He_{ISM} \rightarrow \bar{p} \dots & \text{No direct measurements until 2017 (SMOG)} \end{cases}$

- Uncertainties in the pbar production spectrum are at least 10%.
- Below 100 GeV the uncertainties for $pp
 ightarrow \overline{p}$ are about 10-20%
- Above 100 GeV extrapolations lead to errors larger than 30%

In March 2017 LHCb has performed the first measurement of the antiproton cross-section in p-He collisions at 6.5 TeV using fixed He target @ SMOG. A precision of around 10% is attained

Compilation of Measurements: LHC contributions

Winkler, JCAP 02(2017)048

- There are new improved calculation of secondary antiproton production, with a particular focus on the high energy regime, **employing the most recent collider data**.
- A substantial increase of antiproton cross sections with energy, driven by the violation of Feynman scaling as well as by an enhanced strange hyperon production.
- This violation could lead to more antiprotons than expected at high energies

Secondary background for exotic search

- We are involved in the analysis of the nuclear uncertainties which afflict secondary antiprotons production in the ISM
- Thanks to the AMS-02 plus GALPROP/HelMod approach, propagation uncertainties are lower than nuclear ones
- Bologna group has started a collaboration with COMPASS/AMBER experiment in order to provide precise and up-to-date pp and pHe cross section measurements for the DM search in the antiproton channel

Nuclear uncertanties: D'Angelo, Thesis 2021

p-He, He-p collision cross section from SMOG

A new era for astroparticle physics

- AMS-02 data allow a deeper understanding of the «High Energy Universe» and do put the models to the test, highlightning theoretical inaccuracies and driving the models to a precision astroparticle physics;
- Fitting AMS-02 data with the ultimate GALPROP framework together with the HelMod model of Heliosphere, a precise propagation scheme was achieved, granting a unitary description of CR physics at the % level for primary cosmic rays;
- Once fixed the CR propagation parameters, the secondary astrophysical background for DM and exotic searches is greatly reduced;
- We cannot go much further in reducing astrophysical uncertainties, but we can certainly do it for nuclear ones;
- Nuclear uncertainties should be weigh, considering in details pHe, pA and AA reactions in the ISM, in order to understand how much we have to improve the measurements;
- The next step for antimatter study is to include deuterons, antideuterons and antihelium in the machine to predict their fluxes and guide the forthcoming measurements by AMS-02 and future experiments.