Search for Anti-matter in Cosmic Rays

13/01/2022 A. Oliva

Cosmic Rays

Supernova

High-energy particles and completely ionized nuclei accelerated by astrophysical processes to energies that can surpass what can be be done with man-made accelerators.

nternational

ation

We can measure them **directly** from **Space**, or **indirectly**, after they interact with atmosphere, on **ground**.

Cosmic Ray Spectrum

- Energetic particles and completely ionized nuclei from outer space.
- Many orders of magnitude in energy and flux
 - at low-E: direct detection;
 - at high-E: Extensive Air Shower.
- A power law several features
 - *knee* & *ankle* (\rightarrow different origin).
- At TeV, charged CRs are confined by the *galactic* magnetic field.

Cosmic Ray Composition

proton (~90%) 🖕

helium (~8%) 🔥

heavy nuclei (~1%) 🚷

electron (~1%) • —

positron (<1%)

antiproton (<0.1%)

ATMOSPHERE

Cosmic Ray Anti-matter

Anti-matter in cosmic rays can be produced by:

- Cosmic ray collisions with the galactic medium (low-E supp. ...)
- Dark matter annihilations (e^{\pm} , p, \overline{p} , ²H, ²H, ...)
- Astrophysical objects (*e*[±] production in pulsars, ...)
- Primordial origin (²H, ³He, ⁴He, ...)

 χ particle (e^- , p, ...) anti-particle (e^+ , \overline{p} , ...)

AMS-02: The Alpha Magnetic Spectrometer

Installed in 2011 on the ISS and takes data continuously since then, with more than **190 billion cosmic** rays collected up to now.

International Space Station (ISS)

 $^{\prime 3} imes$ 109 m²

420 t

Annuae	
Inclination	
Period	
Construction	
Dimensions	
Weight	

AMS-02: A TeV Multi-purpose Spectrometer

AMS-2 separates hadrons from leptons, matter from anti-matter, chemical and isotopic composition from fraction of <u>GeV to multi-TeV</u>.

AMS-02: A TeV Multi-purpose Spectrometer

AMS-02 separates hadrons from leptons, matter from anti-matter, chemical and isotopic composition from fraction of GeV to multi-TeV.

AMS identifies 1 positron from 10⁶ protons, unambiguously separate positrons from electrons up to a TeV, and accurately measure all cosmic rays to TeV.

AMS-02: A TeV Multi-purpose Spectrometer

Many other results have been published since then ...

Anti-Deuterons Search

Several authors reported an **anti-proton excess** at low energy at \sim 10 GV in AMS-02 data (with different significances) that can be explained a **dark matter signal**. This signal can give a detectable **anti-deuteron** signal. \rightarrow See Nicolò's presentation

Anti-deuterons (with or without anti-protons) are believed to be a clean channel for indirect dark matter search, their secondary production is very suppressed at low energy, and can be efficiently produced by dark matter annihilation.
→ original idea published in F. Donato et al. Phys. Rev. D 62, (1999).

Anti-Deuterons Search with AMS-02

Charge Identification

TRD

elimination of electron background select $|\mathbf{Z}| = 1$ particles ($\Delta Z/Z \approx 0.1$ c.u.)

Tracker

select $|\mathbf{Z}|=1$ particles ($\Delta Z/Z_{Inner} \approx 0.05$ c.u.) particle sign (+/-), MDR = 1.8 TV

select $|\mathbf{Z}|=1$ particles ($\Delta Z/Z_{Plane} \approx 0.06$ c.u.) separate upgoing/downgoing

select $|\mathbf{Z}| = 1$ particles ($\Delta Z/Z \approx 0.3$ c.u.)

AMS-02 |Z|=1 Mass Resolution

Event Selection

In more than 10 years of data taking we collected over 190 billion events.

+ Very low background at low energy for indirect search of Dark Matter.
- Very low flux, high rejection to other species needed: ²H/p̄ < 10⁻⁴, ²H/p < 10⁻⁹, ²H/e⁻ < 10⁻⁶
→ To achieve enough separation methods based on multivariate analysis have been employed.

Status of Anti-Deuteron Search with AMS-02

 \rightarrow Under development, large background (tails of p-bar) to be understood in this energy range.

Current Best Limit on Anti-Deuteron Flux: BESS Polar-II

Has given the best upper limit on anti-deuteron flux: $J(^{2}H) < 5.1 \times 10^{-5} \text{ m}^{-2}\text{s}^{-1}\text{sr}^{-1}(\text{GeV/n})^{-1}(95\% \text{ CL})$

Anti-Matter Search in the Near Future: GAPS

General Anti-Particle Spectrometer (GAPS): a balloon-borne instrument designed to detect cosmic ray antimatter stopping it in material forming and exotic atom with the material and detecting the X-ray from orbital transition of the exotic atom and the pion "star" produced by final annihilation. In construction, foreseen several balloon campaigns in Antarctica.

Anti-Matter Search in the Next Future: AHDH

Anti Deuteron Helium Detector (ADHD): high pressure helium calorimeter for the identification of the anti-deuterons with the "exotic atom" technique (à là GAPS), profiting of the delay between anti-deuteron capture and production of pions. The project is in R&D phase.

Anti-Matter Search in the Far Future: AMS-100

From ESA Voyager 2050 Call

Operational on the ISS since 2011Weight:7 tPermanent Magnet: $BL^2=0.15 \text{ Tm}^2$ Acceptance: $0.1 \text{ m}^2\text{sr}$ MDR:2 TVCalorimeter: $17 X_{0r} 1.7\lambda$

 \rightarrow A factor "100" in energy scale and acceptance with respect to AMS-02.

Anti-Matter Search in the Far Future: ALADInO

Antimatter Large Acceptance Detector In Orbit (ALADInO): large spectrometer (acceptance > 10 m² sr), based on a superconducting toroidal magnet, with a high resolution (3 μ m) tracker, a time-of-flight detector, and an 3D imaging electromagnetic calorimeter in LYSO. To be installed in L2.

0.8T toroidal magnetic field.

Our group participates in this proposal ...

An AMS-02 Anti-Helium Candidates

Conclusion

> Complex anti-matter has never been detected firmly in cosmic rays. Its observation would have important consequences for our understanding of dark matter or matter/anti-matter asymmetry in universe.

> AMS-02 has been operating continuously in the Space Station since May 2011 performing precision measurements of cosmic rays and showing some possible signal of anti-matter.

> New project in the near and far future will be realized for the search of anti-matter in cosmic rays.