HIT data taking

HIT: a perfect data taking: !! Thanks to all the crew that made this possible

Piergiorgio will give a summary of the acquired data

1

We need a lot of guys to reach this Goal (FOOT goal!!)

Moreover we have also: GSI2019-20, GSI2021, CNAO2021, HIT2022 (and CNAO2022?)

Speaking with involved people:

Choose one data sample (He(220?) and face all the analysis steps till the cross section

All detectors:

- SC, BM, MSD, TW, CALO, TRIG
- Good Run List
- Beam rate (medium and inside spill)
- □ Alignment (BM MSD TW CALO)
- Calibration
- □ MC
 - Geometry check
 - Production
 - Comparison with RD
 - Efficiency (all subdetectors)
- Nuclear Interaction on each subdetector

Analysis, 2

Subdetectors:

SC

Pile up estimation

D BM

Performance (spatial and angular) vs rate

MSD:

- Pedestal: estimation and stability
- eta function (correction of the impact position)
- Energy estimation vs charge of the fragments
- Energy estimation vs rate
- Efficiency vs rate

D TOFW

- Efficiency reconstruction of fragment charge
- Spatial and Energy resolution

CALO:

- energy measurement vs:
 - charge fragment
 - energy fragment
 - Temperature

TRIGGER

- Fragmentation efficiency
- Threshold check

DAQ

- Efficiency estimation
- Bottleneck estimation

Analysis, 3

Physics:

- Vertex determination (events with >= 2 tracks)
- □ Event selection (SC BM)
- Nuclear interaction in air
- **Charge determination of nuclear fragments**
- Mass determination of nuclear fragments
- Determination of background events
- Unfolding

Fundamental to have a simple tool to allow to many guys to use SHOE

I repeat: We need a lot of guys to reach this Goal (FOOT goal!!)