

Preliminary elemental cross sections with GSI data

Riccardo Ridolfi

12 January 2021

400 MeV/u ¹⁶0 beam on 5mm Carbon target

Run	Trigger type	Target	Events
4305	MB	\mathbf{C}	162102
4306	MB	\mathbf{C}	577096
4307	MB	\mathbf{C}	513370
4310	Frag + MB	С	1012099
4313	MB	no	57133

Table 6.1: Run list GSI2021.

400 MeV/u ¹⁶0 beam on 5mm Carbon target

With available data total integrated and angle differential cross section are achievable (no kinetic energy)

$$\sigma(Z) = \int_{E_{\min}}^{E_{\max}} \int_{0}^{\theta_{\max}} \left(\frac{\partial^2 \sigma}{\partial \theta \partial E_{\min}} \right) \mathrm{d}\theta \mathrm{d}E_{\min} = \frac{Y(Z)}{N_{\mathrm{prim}} \cdot N_{\mathrm{TG}} \cdot \varepsilon(Z)}$$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\theta}(Z) = \frac{Y(Z,\theta)}{N_{\mathrm{prim}} \cdot N_{\mathrm{TG}} \cdot \Delta\theta \cdot \varepsilon(Z,\theta)}$$

400 MeV/u ¹⁶0 beam on 5mm Carbon target

With available data **total integrated** and angle differential cross section are achievable (no kinetic energy)

$$\sigma(Z) = \int_{E_{\min}}^{E_{\max}} \int_{0}^{\theta_{\max}} \left(\frac{\partial^2 \sigma}{\partial \theta \partial E_{\min}} \right) d\theta dE_{\min} = \frac{Y(Z)}{N_{\text{prim}} \cdot N_{\text{TG}} \cdot \varepsilon(Z)}$$

Align FOOT detectors and estimate angular acceptance

Extract fragment yields from TW

Calculate MC efficiencies for fragments

400 MeV/u ¹⁶0 beam on 5mm Carbon target

With available data total integrated and **angle differential** cross section are achievable (no kinetic energy)

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\theta}(Z) = \frac{Y(Z,\theta)}{N_{\mathrm{prim}} \cdot N_{\mathrm{TG}} \cdot \Delta\theta \cdot \varepsilon(Z,\theta)}$$

Align FOOT detectors and estimate angular acceptance

Extract fragment yields from TW

Calculate MC efficiencies for fragments

400 MeV/u ¹⁶0 beam on 5mm Carbon target

In this analysis trackers (VTX & MSD) are not included!

Fragmentation out of target will be estimated with no target runs

Data analysis carried out in GSI VIRGO cluster

Detector alignment

All the geometry was handled by **SHOE** TAGgeotrafo

To align BM and TW projections of beam particles were used

Detector alignment

Detector alignment

All the geometry was handled by **SHOE** TAGgeotrafo

To align BM and TW projections of beam particles were used

Due to the asymmetric shift of TW acceptance $\theta \max \approx 5^{\circ}$

SHOE output (ZID)

Run 4310 + BB curve implemented in SHOE for 400 MeV/u

SHOE output (ZID)

Run 4310 + BB curve implemented in SHOE for 400 MeV/u

Updated layout

Using just the <u>newgeom branch</u>, for the moment, the geometrical layout of <u>GSI2021_MC</u> campaign has been updated according to the survey performed in cave A (as from the document uploaded in the Elog)

We have considered for the moment the case with all detectors centered in the XY plane (400 MeV/u runs)

Gaussian beam with σ_{x} = 2.3 mm σ_{y} = 1.5 mm

Giuseppe & Silvia, Physics meeting 28.07.2021

Only particles with cut in Ekin, produced in target by primary beam inside TW acceptance No unfolding up to now

$$\varepsilon(Z) = \frac{N_{\rm TW}(Z) + 1}{N_{\rm track}(Z) + 2}$$

......

asking for a good TW point matched to a fragment produced in TG within TW acceptance and kinetic energy between [100,600] MeV/u

asking for a fragment produced in TG within TW acceptance and kinetic energy between [100,600] MeV/u

Eff_point

$$\epsilon_{\varepsilon}(Z) = \sqrt{\varepsilon(Z) \frac{N_{\rm TW}(Z) + 2}{N_{\rm track}(Z) + 3}} - \varepsilon(Z)^2.$$

Cross section measurement MB (4305-6-7)

Cross section measurement MB (4305-6-7)

Cross section measurement frag (4310)

Cross section measurement frag (4310)

Background subtraction

Cross sections (no target, 4313)

Cross sections

C. ZEITLIN et al.

PHYSICAL REVIEW C 83, 034909 (2011)

TABLE VII. Fragment production cross section for ¹⁶O beams on elemental targets. Beam energies at extraction are shown, in units of MeV/nucleon. All cross sections are in mb.

Cross sections

Very preliminary angular raw cross section

Conclusions

Very preliminary elemental cross sections with 400 MeV/u ¹⁶O beam on 5mm Carbon target were shown

No trackers included

Difference between fragmentation and MB runs under investigation

Low-Z cross sections seem to be too high

Comments and help are welcome! (but after 31st Jan)

Thanks for your attention!