

FALAPHEL – Preliminary PIC Measurements

Simone Cammarata^{1,2}, Philippe Velha^{2,3}, Stefano Faralli^{2,3}

¹ Dipartimento Ingegneria dell'Informazione (DII), Università di Pisa, Via G. Caruso 16, 56122 Pisa, Italy
² Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pisa, L. Pontecorvo 3, 56127 Pisa, Italy
² Scuola Superiore Sant'Anna (SSSA), Istituto di Intelligenza Meccanica, Via G. Moruzzi 1, 56127 Pisa, Italy

Correspondance: simone.cammarata@phd.unipi.it

Pisa, 16 January 2022

Outline

- Overview Falaphel PIC
- Characterization setup @ Scuola Sant'Anna
- MZMs and RMs preliminary measurements
- Future works

Falaphel PIC – Overview

- PIC designed in Imec's iSiPP50G technology
- Electro-optic modulators for optical communication in high energy physics, e.g., Mach-Zehnder modulators (MZMs), ring modulators (RMs), electro-absorption modulators (EAMs), etc.
- Submitted in June 2020 and delivered end of December 2021

Si Ring Modulator

Sant'Anna

INFN

MZMO MZM1 MZM2 MZM3

- Bare photonic die mounted on a mechanical stage equipped with thermo-electric cooler
- 16 channels vertical fiber array used to couple light via grating couplers
- Fiber array angle and position optimized to locate the grating response peak near 1550 nm

cleaved fiber array block

Sant'Anna

INFN

MZMs – Insertion Losses

- Insertion losses for MZMs (including splitters and heaters) with different doping patterns:
 - MZM0 (doping P+N+): ~ 4 dB
 - MZM1 (doping P+N): ~ 8 dB
 - MZM2 (doping P+PN): ~ 9.5 dB
 - MZM3 (doping PN): ~ 16 dB

MZMs – DC Electro-Optic Spectrum

- Modulation response of MZMs with different doping patterns
- Higher-doped samples show better modulation performances, as expected
- Accurate performance metrics (e.g., V_{π}) to be post processed soon...

Sant'Anna

INFN

RMs – Preliminary Measurements

- Custom all-pass RMs are slightly out of critical coupling (over-coupling is supposed), while Imec's building block RM clearly on critical coupling
- Custom add-drop RMs present deeper static extiction ratios than all-pass RMs but tiny modulation response (15-20 pm/V)
- Accurate performance metrics to be post processed soon...

Heaters – Electro-Optic Characterization

- Electro-optic characterization of heating elements for RMs and MZMs. Each modulator type has (almost) the same heater strcture throughout the chip.
- Ring modulator (RM2, **tungsten** heater):
- Mach-Zehnder modulator (MZM3, **doped-Si** heater):

 $V_{FSR} \sim 3.3$ V with $P_{FSR} \sim 100$ mW V_{π} ~ 11.5 V with $P_{\pi} \sim 25$ mW

8

Sant'Anna

Future Activities

- Electro-optic DC characterization of each device
- Characterization of test structures (sheet resistances, ring resonators, waveguides, etc.)
- Samples packaging @ CamGraPhIC
- RF **fully-electrical** test of modulating structures (ongoing activity)
- RF electro-optical characterization
- Build setups and automated mesurement routines for irradiation campaings

Sant'Anna

INFN

MZMO MZM1 MZM2 MZM3

Università di Pisa

Thanks for the attention

Correspondance: simone.cammarata@phd.unipi.it

Pisa, 16 January 2022