Congresso 3-4 febbraio 2022

Detector developments for future experiments

Alessandra Pastore (INFN Bari) on behalf of many others

> Il Congresso della Sezione INFN e del Dipartimento di Fisica di Bari

Designing our future

- Future detector developments: global perspectives
- Research and developments @ INFN Bari
- Summary and outlooks

The 2021 ECFA European Detector R&D roadmap

May 2020 → EPPSU mandate to ECFA

develop a roadmap for detector R&D efforts in Europe, with a bottom-up approach

coordination between several communities (ECFA, APPEC, NuPECC, LEAPS, LENS, ESA)

Il Congresso della Sezione INFN e del Dipartimento di Fisica di Bari Detector R&D roadmap: focus on INFN Bari

- several R&D activities started or ready to start locally
- focus on future experiments (medium-long term)
- well integrated into the ECFA roadmap

II Congresso della Sezione INFN e del Dipartimento di Fisica di Bari

https://cds.cern.ch/record/2784893

https://cds.cern.ch/record/2784893 Detector R&D roadmap: focus on INFN Bari An indication of the earliest feasible start dates is given Other freed tagget Falty frees Plo-IL OWE DUNE HUDOR Sos fiteoria Jer ¢℃ Large Accelerator Based Facility/Experiment < 2030 2030-2035 2035-2040 2040-2045 > 2045 Poor of the Quantum Sensor HED OF OCTO Functional Quantum Sensor HED Defections Colore Cantin Series HED OFFICION Sooo Sooo Computer Descore SHOWING UNIUS OF STORES Hundrey of the Ohl Oelector Hundred to Scale Din defectors Muse Place 1 CONFT Place Multione Scale Du Delectors Arions, Alos Dar Marier Oly Soace based Quentum Sensors Futue Mueganna Etoennen 100 m 400 milester Big Bang (CNB) Date of or Neutrino Telescopes (Anns) Neutrino Telescopes Kmg Neutrino Téescopes (Mm) Tient Din Dever Light Du Delectors Avons, ALDS, Dig Tonne Scale Unbb **Smaller Accelerator** and Non-**Accelerator Based Experiments** (not exhaustive) < 2025 2025-2030 > 2035 2030-2035

Il Congresso della Sezione INFN e del Dipartimento di Fisica di Bari

			< 2030	2030- 2035	2035- 2040	2040- 2045	> 2045
Gaseous	DRDT 1.1	Improve time and spatial resolution for gaseous detectors with long-term stability		•			
	DRDT 1.2	Achieve tracking in gaseous detectors with dE/dx and dN/dx capability in large volumes with very low material budget and different read-out schemes		•	•		
	DRDT 1.3	Develop environmentally friendly gaseous detectors for very large areas with high-rate capability		-	-		
	DRDT 1.4	Achieve high sensitivity in both low and high-pressure TPCs		\rightarrow			

focus on:

II Congresso della Sezione INFN e del Dipartimento di Fisica di Bari

The IDEA detector at e⁺e⁻ colliders

CEPC at IHEP-China

FCC-ee

at CFRN

a CEP

Innovative Detector for Electron-Positron Accelerators

electron-positron collisions in a wide energy range

measure the Higgs boson σ_{prod} and most of its properties with precisions far beyond achievable at the LHC

Central tracker:

- silicon pixel vertex detector
- large-volume ultra-light drift chamber
- silicon strip detectors in both barrel and forward regions

IDEA-Bari

 $\begin{array}{l} \mbox{Ultra} - \mbox{light cylindrical DC:} \\ \mbox{4 m long, r = 35-200 cm,} \\ \mbox{112 layers, 343968 wires in total} \\ \mbox{90\% He} - 10\% \mbox{i-C4H10 gas mix} \\ \mbox{ϵ_{trk}} ~ 1 @ \mbox{θ} > 260 \mbox{ mrad} \end{array}$

New concept of construction material reduced to $\approx 10^{-3}$ X0 (barrel) and to a few x 10⁻² X0 (end-cap)

IDEA-Bari:

- Focus on the ultra-light drift chamber project
- Design, test and characterization of a small chamber as drift velocity monitoring device
- Geant4 simulation of the drift chamber
- test beam activity at CERN to test the "cluster counting" technique for PID

Design, test and characterization of a small chamber for monitoring the drift velocity

PRIMARED FOR SUBMISSION TO JINST INTERNATIONAL CONFERENCE ON INSTRUMENTATION FOR COLLIDING BEAM PHYSICS 24 - 28 FEBRUARY, 2020 BUDKER INSTITUTE OF NUCLEAR PHYSICS, NOVOSIBIRSK, RUSSIA **A 10⁻³ drift velocity monitoring chamber F. Cuna**^{ar,b,1}, G. Chiarello^d, A. Corvaglia^a, N. De Filippis^{a,f}, F. Grancagnolo^a, M. Manta^b I. Margieka^{c,c}, A. Miccoll^a, M. Panareo^{a,b}, G. F. Tassielli^{a,1} ^{ar}Istinto Nazionale di Fisica Nucleare, Lecce, Italy ^b Università del Salento, Italy ^c Università del Salento, Italy ^{d'}Istinto Nazionale di Fisica Nucleare, Roma, Italy ^{d'}Istinto Nazionale di Fisica Nucleare, Bari, Italy ^rIstinto Nazionale di Fisica Nucleare, Bari, Italy ^rPoliteonico di Bari

continuous monitoring of the quality of gas \rightarrow install a small drift chamber that allows to measure electron v_{drift} variations at the 10⁻³ level, in < 1 min

Simulation studies with Garfield++

Geant4 simulation of the drift chamber

DC simulated at a good level of geometry details, including detailed description of the endcaps

hit creation and track reconstruction code available

full simulation for the IDEA detector going to be ported in the FCC framework

ionizing track <u>"cluster counting" technique for PID</u> drift tube Counting dNcl/dx (# of ionization acts per unit length) \rightarrow make possible to identify particles (P.Id.) with a better resolution than dE/dx Particle Separation (dE/dx vs dN/dx) dN/dx δ_{cl} = 12.5/cm for He/iC₄H₁₀=90/10 and a 2m track $\rightarrow \sigma \approx 2.0\%$ dN_{cl}/dx dE/dx 4.3% dE/dx reso 9

II Congresso della Sezione INFN e del

Geant4 simulation of the drift chamber

DC simulated at a good level of geometry details, including detailed description of the endcaps

hit creation and track reconstruction code available

full simulation for the IDEA detector going to be ported in the FCC framework

"cluster counting" technique for PID

Test beam at CERN/H8 in 2021 to test the technique:

- Need to demonstrate the ability to count clusters
- Establish the limiting parameters for an efficient cluster counting(cluster density , space charge, gas gain saturation)

• In optimal configuration, measure the relativistic rise as a function of $\beta\gamma$, both in dE/dx and in dN_{cl}/dx, by scanning the muon momentum from the lowest to the highest value

Il Congresso della Sezione INFN e del Dipartimento di Fisica di Bari

LHCb Upgrade II (\geq LS4), FTDR to be published in March 2022

Future Muon Detector: Bari Group is actively involved in

- simulation and optimization studies of the Muon Detector design
- R&D on new generation RPCs with eco-friendly gas mixtures
- new FE electronics (INFN Bari Electronics Service)

R&D on new generation RPCs with eco-friendly gas mixtures

Performance studies on RPCs with different gap and electrodes thickness, operated with eco-friendly gas mixtures on-going in Bari and at CERN GIF++

<u>new FE electronics (INFN Bari Electronics Service)</u>

Development of a new version of the FATIC2 chip to meet LHCb requirements for µRWELL, MWPC and RPC options

> Il Congresso della Sezione INFN e del Dipartimento di Fisica di Bari

prototype of a RPC-triplet (INFN Bari Mechanics Service)

ND280 upgrade for T2K phase II and Hyper-K

Group activities:

- Electric field simulation inside the field cages
- Construction of new generation TPCs with micro-pattern gas detector readout

- Gas system design, implementation and maintenance Goal of this new detector: increase the phase space coverage of the current ND280 up to $4\pi \rightarrow$ increase the ND280 constraint on xsection models in order to improve oscillation analyses

AIDA-INNOVA (WP 7.4)

Group activities:

- Simulation and construction of a High-pressure TPC prototype with hybrid readout (optical+MPGD)

- Study different gas mixtures as a target for neutrino interactions Goal of this new detector: increase our knowledge on neutrino xsection models (extremely important for the next generation of neutrino oscillation experiments, as HK)

AIDA-INNOVA (WP 7.4)

- * At low energies the main kind of interactions are CCQE-like
 - Other neutrino interactions with production of pions in the final state are important as well
 - There are large discrepancies between different theoretical models
 - Neutrino x-sec are not completely understood at low

energies

Vi Long range correlations (RPA) Short range correlations (MEC)

A dedicated experiment is needed in order to reduce the systematic uncertainty related to the neutrino x-section model (today the largest systematic uncertainty in the neutrino oscillation analyses)

AIDA-Innova project (HPTPC with hybrid readout) started in Bari since April 2021

Vessel design will be done by our CAD group here in Bari

AIDA-INNOVA (WP 7.4) Ideal schedule

- *High-pressure Lab. in our department High pressure flowmeter will be installed in late spring*
- Design and construction of the prototype
 will be done in Bari by using CAD design and Mechanical workshop (this year)
- Fest and data taking with the prototype (2023-2024)
 - different pressure values, different gas and different readout techniques can be checked

- Some optical readout possibility already tested in UK:
 A FLI Proline PL09000 CCD camera is mounted on the window flange
 - A Nikon f/1.2 50 mm focal length lens is used to focus on the amplification region from the cathode side.
 - The camera images an area of 71 × 71 cm² and provides a granularity of 3056 x 3056 pixels → effective readout segment sizes of 230 µm length possible
- Triple-GEM or resistive MicroMegas can be used as MPGD readout

			< 2030	2030- 2035	2055- 2040	2040- 2045	> 2045
Solid state	DRDT 3.1	Achieve full integration of sensing and microelectronics in monolithic CMOS pixel sensors Develop solid state sensors with 4D-capabilities for tracking and calorimetry Extend capabilities of solid state sensors to operate at extreme fluences		•	-	•	\rightarrow
	DRDT 3.2					•	\rightarrow
	DRDT 3.3					•	
	DRDT 3.4	Develop full 3D-interconnection technologies for solid state devices in particle physics			•		

focus on:

II Congresso della Sezione INFN e del Dipartimento di Fisica di Bari 2040

The Electron-Ion Collider (EIC) in US:

a new, innovative, large-scale particle accelerator facility planned for construction **at BNL** in the 2020s

The EIC will study protons, neutrons and atomic nuclei with the most powerful electron microscope, in terms of versatility, resolving power and intensity, ever built.

The resolution and intensity is achieved by colliding high-energy electrons with high-energy protons or (a range of different) ion beams

70%

70%

p to Uranium

up to two

- Center of Mass Energies 20 GeV 140 GeV
- Maximum Luminosity $10^{33}-10^{34} \, \text{cm}^{-2} \text{s}^{-1}$
- Hadron Beam Polarization
- Electron Beam Polarization
- Ion Species Range
- Number of interaction regions

							1								
	FY19	FY20	FY2I	FY22	FY23	FY24	FY25	FY26	FY27	FY28	FY29	FY30	FY31	FY32	FY33
Critical Decisions	CI P)-0(A) c 2019	CD-I(A)		CD-2/3A Apr 2023	CD-3	• • • • •							CD-4A prove start operations 2031	CD-4 Approve proj. completion Jul 2033

- July 2018: endorsement by US NAS (National Academy of Science)
- January 2020: CD0 (mission need approval) and site selection (BNL)
- February 2021: EIC CDR: <u>https://doi.org/10.2172/1765663</u>
- March 2021 Yellow Report released: <u>https://arxiv.org/abs/2103.05419</u>
- March 2021: Call for detector proposals: <u>https://www.bnl.gov/eic/CFC.php</u>
- June 2021: CD-1 (completion of Definition Phase and the conceptual design)
- December 2021: proposals sent to DoE (ATHENA, ECCE, CORE): feedback expected in March 2022

✓ ATHENA is general purpose for IP6 with new 3T solenoidal magnet (and large bore diameter)

- ✓ ECCE is general purpose detector for IP6 re-using 1.4 T Babar magnet (bore diameter 2.8)
- ✓ CORE is a more "compact" proposal, potentially for IP8 (3T solenoid as well)

EIC-Bari:

Tracking system in ATHENA@EIC

- Si Vertex Tracker: 3 layers
 - ✓ first layer @ R~33 mm
 - ✓ material 0.05% X₀ per layer
- Si inner barrel Tracker: 2 layers
 - ✓ material 0.55% X₀ per layer
- FW and BW Si Tracker disks
 - ✓ material 0.24% X₀ per disk

- ✓ existing experience from eRD16/eRD18/eRD25 US projects
- ✓ targeting the 65 nm MAPS technology (10 μ m pitch, < 20 mW cm⁻²) being developed for ALICE ITS3 → R&D synergies EIC/ALICE (for INFN in Bari and Trieste) see talk by D. Colella
- Tracking WG coordination for YR (2020) and ATHENA proposal (2021): INFN Bari
- EIC Silicon Consortium leadership representatives: INFN Bari and Trieste

A next-generation Heavy lon experiment

- » Ultra-lightweight silicon tracker with excellent vertexing
 - \rightarrow 12 tracking barrel layers + disks based on MAPS

see talk by D. Colella

- » Particle identification
 - \rightarrow TOF determination (20 ps time resolution), Cherenkov, pre-shower/calorimeter
- » Dedicated forward detector for soft photons (conversion + Si tracker)
- » Further detectors under study (e.g. muon ID)
- » Fast to profit from higher luminosity (x20 x50 higher than in ALICE 2)
- » Kinematic range down to very low p_T: 50 MeV/c (central barrel), 10 MeV/c (forward dedicated detector)
- » Large acceptance: barrel + end-caps $\Delta \eta$ = 8

ALICE3-Bari:

Inner and Outer Silicon Trackers

Inner tracker

- \rightarrow ultra-thin layout: flexible wafer-scale sensors (MAPS/ITS3)
- \rightarrow minimal distance from IP requires retractable detector
- \rightarrow position resolution O(1 μm) requires small pixel pitch

Outer tracker

- \rightarrow large areas to instrument O(100 m²): develop costeffective sensors
- \rightarrow low material budget requires low-weight support and services

Medium size Gamma-ray telescopes based on Si strip/pad detectors

see talk by

R. Pillera

- Next MeV-GeV satellite generation:
 - Enable Compton regime reconstruction
- ASTROGAM M5-Esa call (2016-2018) (INFN PI):
 - nearly 56 m² of double-sided Si strip detectors (DSSDs)
 - 4 towers, 56 layers of 5×5 DSSDs
 - 5600 DSSDs
 - Each DSSD wafer has a cross section of 9.5×9.5 cm², a thickness of 500 μm and a pitch of 240 μm (384 strips per side)
- AMEGO Probe mission NASA call (2019-2021) (NASA PI):
 - 4 towers, 60 layers of 4×4 DSSDs
 - 4800 DSSDs
 - DSSD wafers 9.5 cm wide, 500 μm thick and pitch of 500 μm (190 strips per side)
- DSSDs wire-bonded on both sides to form 2-D views
 - Bonding machines should be able to work on large area planes, as the strips in both direction need to be connected
 - Non-trivial ladder mechanic support to avoid wire bonding paths

Recent NASA MIDEX call

• Astrophysics Explorers Program 2021 Medium Explorer (MIDEX)

2022

Phase A

- Release: Aug 2021
- Proposal due: Dec 9, 2021
- Selection: early 2024
- Launch Readiness: late 2028
- AMEGO-X proposal submitted (NASA PI):
 - A reduced layout of AMEGO instrument
 - Large pixel pad-based tracker
 - Pixel size $500\times500~\mu m^2$
 - Si thickness 500 μm
 - Good energy resolution at low energy
 - AstroPix NASA grant on going based on the ATLAS pixel
 - AstroPix v1 version under test
 - Pixel size $200\times 200~\mu m^2$
 - For more details see https://arxiv.org/abs/2109.13409
 - INFN activities for the pixel development to be discussed

2023

2024

Phase B

2025

2026

Phase C

2027

2028

Phase D

2029

2030

Phase E

2031

(a) Top level view of the AstroPix V1 sensor matrix. The matrix is 18 by 18 pixels, each pixel 200 μm^2 , with digital readout for each row and column.

(b) Picture of the AstroPix V1 detector on a ca rier board.

				< 2030	2030- 2035	2035- 2040	2040- 2045	> 2045
PID and Photon	DRDT 4.1	Enhance the timing resolution and spectral range of photon detectors		-	-		\rightarrow	
	DRDT 4.2	Develop photosensors for extreme environments						
	DRDT 4.3 DRDT 4.4	Develop RICH and imaging detectors with low mass and high resolution timing Develop compact high performance time-of-flight detectors				\rightarrow		

focus on:

II Congresso della Sezione INFN e del Dipartimento di Fisica di Bari

2030-

< 2030

2035-

2040-

ALICE3-Bari:

Aerogel – RICH barrel to complement TOF PID

- Increase radius of TOF layer(s) by 22 cm to insert 2 cm of aerogel Cherenkov radiator + 20 cm expansion gap
- Implement single-photon detection in TOF layer (using SPADs or SiPM) for Cherenkov radiation, sensitivity in the visible range is necessary
- Exploit both information from Cherenkov angle and Cherenkov photons timing to complement TOF PID.

giacomo.volpe@ba.infn.it

ALICE 3

Nanodiamond photocathodes for MPGD-based single photon detectors at future EIC

Main key requirements for hadron ID@EIC with RICH:

compact geometry and high space resolution → reduced pad size

radiation hardness \rightarrow need for a robust photocatode

Csl

- > Low electron affinity > 0.1 eV
- > Wide band gap > 6.2 eV
- > Typical Quantum Efficiency > 35 50% @ 140 nm
- > Csl has hygroscopic nature
- > Aging > Ion Accumulation > Degradation in QE of PC

> Low electron affinity > 0.35 - 0.5 eV> Wide band gap > 5.5 eV

- > Preliminary measured QE > 30 40%@ 140 nm for Hydrogenated ND.
- > Chemically inert

Nanodiamond (ND)

- > Radiation hard
- > Good thermal conductivity

R&D ongoing on ThickGEM-based counters for single photon detection

Nanodiamond photocathodes for MPGD-based single photon detectors at future EIC

Multi-PMT for the Hyper-K multi-purpose Water-Cherenkov detector

Group activity:

multi-PMTs design with the INFN Bari CAD group simulations of the mechanical stress of multi-PMT under pressure

Goal of this new detector: improve performances on vertex resolution and directional sensitivity with respect to the current SK PMTs

vincenzo.berardi@ba.infn.it, roberto.spina@poliba.it

focus on:

MInternational WON Collider Collaboration

The multi-TeV Muon Collider concept :

a unique next-generation lepton-collider facility at the high-energy frontier

Muon Collider can be used both as **direct exploration** and **precision** machine

critical technologies required to produce, capture, accelerate and store intense beams of $\boldsymbol{\mu}$

μ production options: MAP vs LEMMA

arXiv: 1901.06150 J.P. Delahaye et al.

MAP

US Muon Accelerator Program, 2011

Proton driver scheme, producing μ (10¹³-10¹⁴ μ /sec)

- as tertiary particles, at low energy
- with large emittance -> quick cooling and confinement

LEMMA (INFN proposal)

Low Emittance Muon Accelerator, 2013 Positron driver scheme, producing μ (10¹¹ μ pairs/sec) - from e+e- collisions, at mean energy ~ 22 GeV - with small emittance -> no cooling or confinement

Muon Collider-Bari

- HCAL design: proposal of a sampling of absorber + MPGD (as active layer)
 - Standalone simulation in GEANT4 for quick studies with particle guns
 - Simulation studies (full apparatus) with physics channels as benchmark for determining its final design
- Participation **to test beam activities to assess the LEMMA option**, mostly focused on the study of the emittance and ee $\rightarrow \mu\mu$ cross section measurements
- **Design study and optimisation** of the Muon Collider **target** zone (v Factory, HARP data used in MAP)

Muon Collider-Bari

A MPGD-based HCAL

- radiation hard technology (BIB)
- high granularity and fast response (S/N)
 - design and/or technology optimisation to improve jet reconstruction while suppressing the BIB

R&D supported by a RD51 (GRANT P. Verwilligen)

First studies performed in standalone GEANT4 environment with simple geometry:

- 10 layers
 - 2cm of Fe (absorber)
 - 5 mm of Ar (active gap)
- 10x10 cm² transverse surface

Full characterization of **high spatial resolution triple GEM,** as a first candidate to build a small calo-cell prototype

- Preliminary test in Bari lab
- Test beam at CERN NA, Fall 2021: ongoing analysis, preliminary results available (efficiencies > 95%, spatial resolution~75 μm)
 - Further goal reached: GE2/1 CMS detectors successfully tested and operated with final CMS electronics (VFAT3 chips + OptoHybrid) and DAQ
 + custom compact back-end based on commercial FPGA (CVP-13)
 - Also provided a test of integration and performance of GEM detectors in view of LEMMA TB (2023) to measure the e+e-→µ+µ- cross section and muon beam emittance at µ production threshold (Bari participation: muon spectrometer with triple-GEM)

Conclusion and outlook

- 2021 set a globally agreed roadmap for the future of particle physics
- a variety of ideas, design studies and R&D activities carried on locally, dedicated to future experiments
- focus on some of them, but many others on-going (to be described soon...)
- a lot of work, and a lot of fun in our near future !

Last but not least, a big thanks to all of you, who have directly and undirectly contributed to this talk

Backup

DETECTOR RESEARCH AND DEVELOPMENT THEMES (DRDTs) & DETECTOR COMMUNITY THEMES (DCTs)

			< 2030	2030- 2035	2035- 2040	2040- 2045	> 2045
	DRDT 1.1	Improve time and spatial resolution for gaseous detectors with long-term stability			-	->	
Gaseous	DRDT 1.2	Achieve tracking in gaseous detectors with dE/dx and dIV/dx capability in large volumes with very low material budget and different read-out		-	•	-	
	DRDT 1.3	schemes Develop environmentally friendly gaseous detectors for very large areas with high-rate canability					\rightarrow
	DRDT 1.4	Achieve high sensitivity in both low and high-pressure TPCs					
	DRDT 2.1	Develop readout technology to increase spatial and energy resolution for liquid detectors					
Lieuld	DRDT 2.2	Advance noise reduction in liquid detectors to lower signal energy thresholds					
Liquia	DRDT 2.3	Improve the material properties of target and detector components in liquid detectors		•->			
	DRDT 2.4	Realise liquid detector technologies scalable for integration in large systems		•			
	DRDT 3.1	Achieve full integration of sensing and microelectronics in monolithic CMOS pixel sensors		•	•	•	\rightarrow
Solid	DRDT 3.2	Develop solid state sensors with 4D-capabilities for tracking and				-	
state	DRDT 3.3	Extend capabilities of solid state sensors to operate at extreme fluences					->
	DRDT 3.4	Develop full 3D-interconnection technologies for solid state devices in particle physics			-	-	\rightarrow
PID and	DRDT 4.1	Enhance the timing resolution and spectral range of photon detectors				-	\rightarrow
	DRDT 4.2	Develop photosensors for extreme environments		•		•	\rightarrow
i noton	DRDT 4.3	Develop RICH and imaging detectors with low mass and high resolution timing					
	DRDT 4.4	Develop compact high performance time-of-flight detectors					
Quantum	DRDT 5.2	Investigate and adapt state-of-the-art developments in quantum technologies to particle physics			-	->	
Gruantum	DRDT 5.3	Establish the necessary frameworks and mechanisms to allow exploration of emerging technologies					
	DRDT 5.4	Develop and provide advanced enabling capabilities and infrastructure		-			
	DRDT 6.1	Develop radiation-hard calorimeters with enhanced electromagnetic energy and timing resolution					
alorimetry	DRDT 6.2	Develop high-granular calorimeters with multi-dimensional readout for optimised use of particle flow methods					
	DRDT 6.3	Develop calorimeters for extreme radiation, rate and pile-up environments					
	DRDT 7.1	Advance technologies to deal with greatly increased data density					
	DRDT 7.2	Develop technologies for increased intelligence on the detector				•	
lectronics	DRDT 7.3 DRDT 7.4	Develop technologies in support of 4D- and 5D-techniques Develop novel technologies to cope with extreme environments and					
	DRDT 7.5	required longevity Evaluate and adapt to emerging electronics and data processing					->
	DRDT 8.1	Develop novel magnet systems			_		
	DRDT 8.2	Develop improved technologies and systems for cooling					
ntegration	DRDT 8.3	Adapt novel materials to achieve ultralight, stable and high precision mechanical structures. Develop Machine Detector Interforce			-	•	->
	DRDT 8.4	Adapt and advance state-of-the-art systems in monitoring including environmental, radiation and beam aspects		-	-	•	
Training	DCT 1	Establish and maintain a European coordinated programme for training in instrumentation					
	DCT 2	Develop a master's degree programme in instrumentation					

Figure 11.1: Detector R&D Themes (DRDTs) and Detector Community Themes (DCTs). Here, except in the DCT case, the final dot position represents the target date for completion of the R&D required by the latest known future facility/experiment for which an R&D programme would still be needed in that area. The time from that dot to the end of the arrow represents the further time to be anticipated for experiment-specific prototyping, procurement, construction, installation and commission ing. Earlier dots represent the time-frame of intermediate "stepping stone" projects where dates for the corresponding facilities/experiments are known. (Note that R&D for Liquid Detectors will be needed far into the future, however the DRDT lines for these end in the period 2030-35 because developments in that field are rapid and it is not possible today to reasonably estimate the dates for projects requiring longer-term R&D. Similarly, dotted lines for the DCT case indicate that beyond the initial programmes, the activities will need to be sustained going forward in support of the instrumentation R&D activities).

Il Congresso della Sezione INFN e del Dipartimento di Fisica di Bari

Challenges of tracking at future e⁺e⁻ colliders

High Lumi e⁺e⁻ colliders:

- EW factories (3x10¹² e⁺e⁻→Z, 10⁸ e⁺e⁻→W⁺W⁻)
- tt
 td
 i and Higgs boson factories (10⁶ e⁺e⁻→tt
- flavor factories (5x10¹² e⁺e⁻ \rightarrow bb, cc, 10¹¹ e⁺e⁻ \rightarrow $\tau^+\tau^-$)

FCC-ee parameters		Z	W*W-	ZH	ttbar
√s	GeV	91.2	160	240	350-365
Luminosity / IP	10 ³⁴ cm ⁻² s ⁻¹	230	28	8.5	1.7
Bunch spacing	ns	19.6	163	994	3000
"Physics" cross section	pb	35,000	10	0.2	0.5
Total cross section (Z)	pb	40,000	30	10	8
Event rate	Hz	92,000	8.4	1	0.1
"Pile up" parameter [μ]	10 ⁻⁶	1,800	1	1	1

Physics rates up to 100 kHz (at Z pole)ightarrow fast detectors and electronic

Tracker:

- High momentum (δp/p² ≤ few x 10⁻⁵) and angular resolution Δϑ ≤ 0.1 mrad (to monitor beam spread) for charged particle momenta ranging at the Z pole from a few hundred MeV/c to several tens of GeV/c
- Large angular coverage
- Large tracking radius to recover momentum resolution since magnetic field is limited to ~ 2 T to contain the vertical emittance at Z pole
- High transparency due to the low momentum particles from Z, H decays → Multiple Scattering (MS) contribution to the resolution is not negligible!
- Particle identification \rightarrow to distinguish identical topology final states

Vertexing:

- Few μm track impact parameter resolution
- High transparency

M. Primavera INFN-Lecce

2nd FCC France Workshop, 20-21 January 2021

IDEA Tracking System

2nd FCC France Workshop, 20-21 January 2021

IDEA → **Innovative Detector for Electron-positron Accelerators** (Details in the D.

4

Nicola DeFilippis

The IDEA detector at e⁺e⁻ colliders

Moreover (internal news)...

- \rightarrow "First FCC-Italy workshop" che si terra' a Roma il 21 e 22 Marzo
- ightarrow For first time, PJAS LHC/FCC both Collaboration at 50% .
- → 1/04/22 Reham Aly at 50%/50% CMS-FCC

Anode readout → Resistive Micromegas

Micromegas detector configuration:

G.Collazuol - Review of HA-TPC Mechanics

42

P.Colas (CEA Saclay Irfu/DPhP)

CERN workshop 2017/11

EIC Project in US EIC timeline

Extremely intense work carried out between March and December 2021 towards preparation of detector proposals by the three proto-Collaborations (INFN is in ATHENA)

Domenico Elia

Il Congresso della Sezione INFN e del Dipartimento di Fisica di Bari

Status and plans for Si-tracker R&D ALICE ITS3 as a solution for EIC

The ALICE ITS3 project aims at developing a new generation MAPS sensor at the 65 nm CMOS node with extremely low mass for the LHC Run 4 (HL-LHC)

ITS3 sensor (from the EIC point of view)

- Specifications meet or even exceed the EIC requirements
- Satisfactory granularity (now targeting 20µm pixel pitch) and power consumption (<20mW/cm²)
- Also, integration time, fake hit rate and time resolution better than required at the EIC
- Sensor design optimized for high yield, stitched sensor to reach wafer-scale size (up to 28 x 10 cm²)
- Development schedule well aligned with EIC timeline

ITS3 Specifications

Parameter	ALPIDE (existing)	Wafer-scale sensor (this proposal)
Technology node	180 nm	65 nm
Silicon thickness	50 µm	20-40 µm
Pixel size	27 x 29 μm	O(10 x 10 µm)
Chip dimensions	1.5 x 3.0 cm	scalable up to 28 x 10 cm
Front-end pulse duration	~ 5 µs	~ 200 ns
Time resolution	~ 1 µs	< 100 ns (option: <10ns)
Max particle fluence	100 MHz/cm ²	100 MHz/cm^2
Max particle readout rate	10 MHz/cm ²	100 MHz/cm ²
Power Consumption	40 mW/cm^2	< 20 mW/cm ² (pixel matrix)
Detection efficiency	>99%	>99%
Fake hit rate	< 10 ⁻⁷ event/pixel	< 10 ⁻⁷ event/pixel
NIEL radiation tolerance	$\sim 3 \times 10^{13}$ 1 MeV n _{eq} /cm ²	10^{14} 1 MeV n _{eq} /cm ²
TID radiation tolerance	3 MRad	10 MRad

M. Mager | ITS3 kickoff | 04.12.2019

ATHENA vertex & tracking Tracking requirements for physics @ EIC

PWG requirements in the YR:

https://arxiv.org/abs/2103.05419

Tracking requirements from PWGs							
			Momentum res.	Material budget	Minimum pT	Transverse pointing res.	
η							
-3.5 to -3.0			$\sigma_{\rm D}/{\rm p} \sim 0.1\% {\rm xp} = 0.5\%$		100-150 MeV/c		
-3.0 to -2.5		Backward	ορ/μ ~ 0.1 /δ+μ Φ 0.0 /δ		100-150 MeV/c	dca(xy) ~ 30/pT µm ⊕ 40 µm	
-2.5 to -2.0		Detector	σp/p ~ 0.05%×p ⊕ 0.5%		100-150 MeV/c		
-2.0 to -1.5		Delector			100-150 MeV/c	dca(xy) ~ 30/pT µm ⊕ 20 µm	
-1.5 to -1.0					100-150 MeV/c		
-1.0 to -0.5							
-0.5 to 0	Central	Borrol	$an/n \sim 0.05\% xn \approx 0.5\%$	~ 5% X0 or loop	100-150 MeV/c	$d_{00}(x_{11}) \sim 20/nT \text{ um } \oplus 5 \text{ um}$	
0 to 0.5	Detector	Darrei	op/p ~ 0.05%×p ⊕ 0.5%	~5% XU or less		uca(xy) ~ 20/p1 µm @ 5 µm	
0.5 to 1.0	1						
1.0 to 1.5					100-150 MeV/c		
1.5 to 2.0		Forward	σp/p ~ 0.05%×p ⊕ 1%		100-150 MeV/c	dca(xy) ~ 30/pT µm ⊕ 20 µm	
2.0 to 2.5		Detector			100-150 MeV/c		
2.5 to 3.0		Delector	$g_{\rm D}/p \sim 0.19 (xp \oplus 20)$		100-150 MeV/c	dca(xy) ~ 30/pT µm ⊕ 40 µm	
3.0 to 3.5			op/p ~ 0.1%×p ⊕ 2%		100-150 MeV/c	dca(xy) ~ 30/pT µm ⊕ 60 µm	

ATHENA@EIC vertex & tracking Basic performance from full simulation

Tracking performance meets or exceeds the momentum resolution requirements stated in the EIC YR, except for the most backward region (needs combination with eCAL, further reduction of material budget etc)

Domenico Elia

Il Congresso della Sezione INFN e del Dipartimento di Fisica di Bari

Sensitivity for currently available measurements in MeV-GeV γ-rays

5

A lot of interesting science, but difficult to accurately measure: "Impossible energy range"

1e-2

- From 1 to ~100 MeV two photon matter interaction processes compete: Compton scattering and pairproduction
- To fill the "MeV Gap" we need to consider both Compton Scattering and Pair Production
- At low energy pair-production components (e⁺ and e⁻) suffer large multiple scattering, causing large uncertainty in the incident photon direction reconstruction
- Materials undergo activation on orbit by cosmic rays: artificial background below ~10 MeV

Energy Range	200 keV -> 10 GeV
Angular resolution	2.5° (3 MeV), 1.5° (5 MeV), 2° (100 MeV)
Energy resolution	<1% (< 2 MeV), 1-5% (1-100 MeV), ~10% (1 GeV)
Field of View	2.5 sr (20% of the sky)
Line sensitivity	<1x10 ⁻⁶ ph cm ⁻² s ⁻¹ for the 1.8 MeV ²⁶ Al line in a 5- year scanning observation
Polarization sensitivity	$<\!\!20\%$ MDP for a source 1% the Crab flux, observed for $10^6~s$
Continuum sensitivity (MeV cm ⁻² s ⁻¹)	2x10 ⁻⁶ (1 MeV), 1x10 ⁻⁶ (100 MeV), 5 years

AMEGO: All-sky Medium Energy Gamma- ray Observatory							
Alexander Moiseev CRESST/NASA/GSFC and University of Maryland, College Park							

for the AMEGO team

ARICH simulation parameters

AEROGEL

- Last generation hydrophobic aerogel from Chiba University with excellent optical properties in the refractive index range 1.03-1.05
- Considered only Rayleigh scattering for the moment, forward scattering has smaller impact on angle resolution and will be added later

PHOTO-DETECTOR

- SiPM HPK 13360 3050CS, 3.x3 mm² pixel
- Dark count rate ~ 50 kHz/mm²
- Assumed 50 ps time resolution

Wavelength (nm)

Rayleigh scattering $T = A e^{-CL/\lambda^4}$ A=1 C=0.00435 µm⁴/cm

overvoltage [V]

Giacomo Volpe

II Congresso della Sezior Dipartimento di Fisic

48

Proton targets @ Muon Collider (E.Radicioni, M.G.Catanesi)

