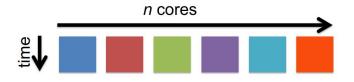
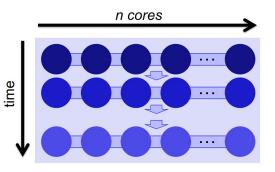


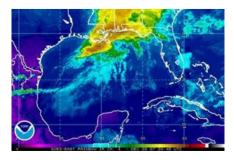
HPC support and use of GPUs for scientific applications

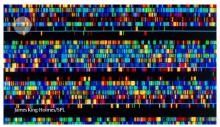

Gioacchino Vino (INFN, Bari)


2° Congresso della Sezione INFN e del Dipartimento di Fisica di Bari, 03-04 Feb 2022

Computing: HTC vs HPC

There are two different approaches to scientific computing:

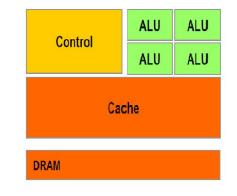

- High-Throughput Computing (HTC)
 - Large workflows of numerous, small and independent tasks
 - Executes on physically distributed resources using grid-enabled technologies
- High-Performance Computing (HPC)
 - Large workflows of highly-interdependent sub-tasks
 - Frequent and rapid exchanges of intermediate results is required to perform the computations
 - Parallel processing over many processors

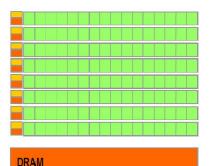


HPC Scientific Applications

- Bioinformatics
- Artificial Intelligence algorithms
- Simulations of physical phenomena such as:
 - Weather forecasting
 - Earthquake forecasting
 - Galaxy formation
 - Molecular dynamics
- Almost all problems that involve many floating point operations.

Why GPU in HPC?


Control Processing Unit (CPU):


- Designed to handle complex tasks
- Low-level parallelism (<100 cores)

Graphical Processing Unit (GPU):

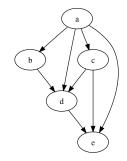
- Massively parallel hardware architecture (> 5000 cores)
- High performance of floating point arithmetic

Make them suited for many scientific workloads on HPC clusters

ReCaS HPC/GPU Cluster

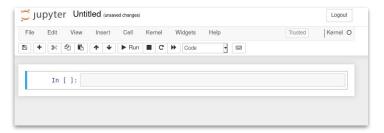
Hardware Facility:

- Nodes: 10
- GPUs: 18 (V100 and A100 Nvidia GPU)
- Cores: 1755
- RAM: 13.7 TB
- Local Storage: 55 TB (SSD/HDD)
- Parallel File System: ReCaS storage based on IBM GPFS (3800TB)
- Bandwidth between nodes: 10 Gbps



Services ready-to-use:

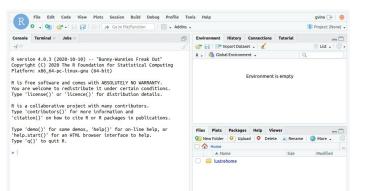
- Interactive remote GPU-based IDE services:
 - Jupyter Notebook
 - "web service for interactive computing across all programming languages"
 - Rstudio
 - "An integrated development environment for R"
- Job Scheduler:
 - Support to GPU-based workflows represented as Directed Acyclic Graphs (DAG)


Jupyter Notebook remote IDE

- After authentication, users have access to their home directory in the ReCaS distributed storage (GPFS)
- Users can immediately create a new Python3 script

- The Jupyter IDE (Integrated Development Environment) will be available and users can already write code and execute it
- Python modules can be installed directly within the code

C jupyter
Password: Log in



RStudio remote IDE

- After authentication, users have access to their home directory in the ReCaS distributed storage (GPFS)
- The Rstudio IDE (Integrated Development Environment) will be available and users can already write code and execute it
- R modules can be installed directly within the code

Username:	
Password:	
	ned in when browser closes tically be signed out after 60 minutes of
	Sign In

R Studio

Job Scheduler (Chronos)

Provides an intuitive and simple User
 Interface (UI) where to check job status

+ ADO JOB									
SUCCESS 0	FAILURE	θ	FRESH	1	RUNNING 1	QUEUED	0	IDLE	θ
JOB			NEX	T RUN	STATUS	STATE			ACTIONS
gpu-job-gvinoko			in	~365 days	fresh	1 running			< 🗆 x
								_	

 New jobs can be submitted using UI or via command line using a JSON file describing the job New Scheduled Job Schedule R/2021-07-22T12:00:00.000Z/PT2 Containe Container PRTM Container Network Name Imag Network Container TVD "name": "<detailed-and-unique-job-name>", Owner N "command": "pvthon3.6 </lustre/path/to/vour/code>". "shell": true, "retries": 2, "description": "" "cpus": 4. "disk": 10, "mem": 8192. "gpus": 1, "environmentVariables": [], "arguments": [], "runAsUser": "<your-username>", "owner": "<your-username>", "ownerName": "<vour-username>". "container": { "type": "mesos", "image": "<your-container-image>" "volumes": [{"containerPath": "/lustre/path/to/your/home-directory>", "hostPath": "/lustre/path/to/your/home-directory", "mode": "RW"}] "schedule": "R1//PT10S"

- Manages heterogeneous requests:
 - 2 GPU / 4 CPU / 20 GB RAM
 - 100 CPU / 8GB RAM

ReCaS HPC/GPU Cluster: Under the hood

Apache Mesos:

- Unifies all cluster resources in a single virtual entity
- Multi-users
- High Availability
- Manages a lot number of nodes

Marathon:

- Runs long running services on top of Apache Mesos
- High Availability
- Load balancing

Chronos:

- Job scheduler for Apache Mesos
- Supports depending and periodic jobs

Apache MESOS

ReCaS HPC/GPU Cluster: Under the hood

Docker container:

- Contains software, code, libraries and dependencies
- Isolates applications from the machine where it is executed
- Images are light, standalone and contain all necessary to be run
- Official images are available (Nvidia, TensorFlow, ...)

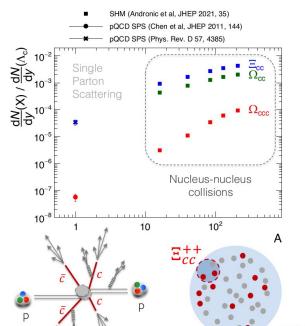
ReCaS HPC/GPU Cluster policy on Docker containers:

- Mandatory for security purpose
- Jupyter Notebook and Rstudio containers have been developed in-house because the majority of the supported use cases needs them
- Not all users' containers can be developed in-house
- An <u>INFN course</u> and a <u>ReCaS tutorial</u> are available to speed-up the user learning process

Use case: Multi-charm reconstruction with ML in ALICE 3

Motivation and challenges

Working Team:


- Domenico Elia
- Annalisa Mastroserio
- omenico Colella
- Gioacchino Vino
- David Chinellato (CERN)

Multi-charm baryons: from low to high density QCD

- Charm production in general: almost exclusive to hard scatterings due to large mass (~1275 MeV/c²)
- Formation of Ξ_{cc}^{++} , Ω_{cc}^{+} , Ω_{ccc}^{+-} : extremely unlikely in single parton scattering (unlike e.g. J/ψ)
- Multi-parton interactions and multi-charm: multiple charm quarks combine into hadrons
- In nuclear collisions:
 - High density of charm quarks leads to much larger multi-charm population
 - Described by SHM (g_c) and coalescence
 - Enormous dynamic effect!

Multi-charm baryons in ALICE 3

2

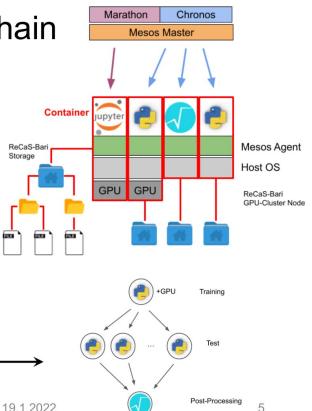
ALICE

UNICAM

Use case: Multi-charm reconstruction with ML in ALICE 3

ML method and analysis chain

ML analysis chain (Gioacchino):


- fully developed from scratch
- ReCaS-Bari GPU-Cluster used:
 - ✓ nodes equipped with NVIDIA A100 or V100
 - ✓ cluster managed with Apache Mesos
 - ✓ services deployed with Mesos and **Docker Containers**

Each container has access to ReCaS-Bari Storage (3.8 PB)

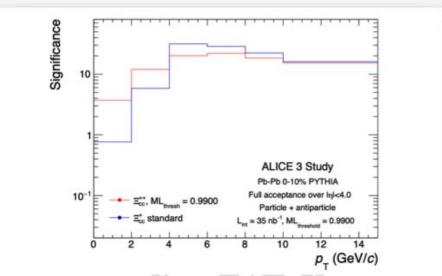
Remote IDE (Jupyter Notebook and Rstudio) with access to GPU are available with Marathon (Development phase)

Analysis can be submitted as a set of dependent tasks (Directed Acyclic Graph) with Chronos (Production phase)

Domenico Elia

ALICE 3 HF WG meeting / 19.1.2022

Preliminary results:


- better than standard selection at low p_{T}
- up to a factor of 4-5x improvement for $p_T < 2 \text{ GeV/c}$

Impact on future measurements:

- ML-based selection has potential to allow measurement of multi-charm down to 0 p_{T}
- included in the ALICE 3 Letter of Intent currently under preparation

Work ongoing:

• still room to improve ML, in particular at low p_{T} , eg with p_{T} -dedicated training

Figure 33: Ξ_{cc}^{++} significance in 0-10% central Pb-Pb collisions at $\sqrt{s_{NN}} = 5.52$ TeV as a function of p_{T} with a 2.0 T magnetic field using standard selections and using machine learning.

Other use cases Cluster

Current running applications and their speed-up vs CPU execution:

- CNR/IREA: x100
- Whole-genome Sequencing: x10
- Machine Learning Algorithms: x40

Strong interest of other groups to use the ReCaS-Bari HPC/GPU Cluster:

- GPU applications (Pompili, ...)
- Al applications

- Kubernetes will replace Apache Mesos since it overcomes some known limitations
- Chronos will be replaced with a more complex workflow scheduler, like Apache
 Airflow
- Adding Apache Spark to the service portfolio

Additional information

At this <u>URL</u> additional information about the ReCaS HPC/GPU Cluster can be found,

together with some guides and tutorials about Docker

I ₩	ReCaS Bari - I Servizi							
Nenu Principale	Cluster HPC-GPU							
= ReCaS Bari	Il Cluster GPU è parte integrante del cluster HPC di ReCaS-Bari e vede la oropria potenzialità maggiormente							
Interconnessione rete regionale LBR con la rete GARR	espressa per applicazioni che utilizzano GPU. Mette a disposizione 1755 core, 13.7 TB di RAM, 55 TB di spazio disco e 38 GPU ad altissime prestazioni (18 Nvidia A100 e 20 Nvidia V100). Onni nod ha accesso al file							
ReCaS Bari - Le News	system distribuito di ReCaS-Bari, con circa 3800 TB in singola replica e altri 180 TB, dove è garantita una maggiore							
ReCaS Bari - L'infrastruttura	sicurezza dei dati attraverso la doppia replica. La banda di comunicazione nodo-storage è di 10 Gbps.							
ReCaS Bari - I Servizi	Le applicazioni sono eseguite esclusivamente tramite Docker container, tecnologia che conferisce semplicità di configurazione ed esecuzione, affidabilià, flessibilità e sicurezza.							
Accesso ai Servizi	L'utente può richiedere l'istanziazione di servizi interattivi, come IDE utilizzabili da remoto (Jupyter Notebook e							
Cloud@ReCaS-Bari	RStudio), e la sottomissione di workflow rappresentati con Directed Acyclic Graphs (DAG).							
Servizi per la Bioinformatica	Ove possibile, i servizi saranno istanziati con IP privato, in modo da non essere raggiungibili dall'esterno e quindi							
Strumenti di Statistica	meno vulnerabili agli attacchi informatici: in questo caso l'utente potrà accedere alle proprie risorse attraverso una							
Strumenti per le neuroimmagini	VPN. Per poter utilizzare i servizi offerti dal Cluster GPU è necessario che l'utente faccia una apposita richiesta.							
Utilità generali	Link utili:							
Compilatori	Servizi Interattivi/Jupyter_Notebook							
Il monitoring	Servizi_Interattivi/Rstudio							
I siti web ospitati su ReCaS	Sottomissione Job							
	Docker e Dockerfile							
ReCaS Bari - Le Attività	Richiesta VPN (selezionare "Access to VPN")							
= ReCaS Bari - Gli Utenti	Richiesta servizi HPC/GPU (selezionare "Account for access to ReCaS-Bari compute services HPC/HTC")							
ReCaS Bari - I Contatti								

THANKS

FOR YOUR

ATTENTION

2º Congresso INFN e Dipartimento di Fisica / Bari / 4 Feb 2022 / Gioacchino Vino