

Sviluppi e applicazioni di algoritmi di Intelligenza Artificiale

Loredana Bellantuono

Dipartimento di Scienze Mediche di Base, Neuroscienze e Organi di Senso Università degli Studi di Bari Aldo Moro

Istituto Nazionale di Fisica Nucleare, Sezione di Bari

2° Congresso della Sezione **INFN** e del **Dipartimento Interateneo di Fisica** di Bari Bari, 4 Febbraio 2022

Our focus → Feature engineering in the activities of Gruppo V in Bari

New GPU Cluster @ ReCaS-Bari

All the applications shown in the following are based on the **ReCaS-Bari high-performance computing** capability

ReCaS upgrade → new GPU Cluster [more details in Gioacchino Vino's talk]

- Currently, the cluster is composed of:
 - 38 GPUs (18 Nvidia A100 and 20 Nvidia V100)
 - 1755 CPU cores
 - 13.7 TB RAM
 - 55 TB Disk Space
- Thanks to the high number of cores, the GPUs allow the running of high-performance parallel algorithms reducing the overall execution time
- The configured cluster is able to run batch jobs or open **interactive environments** where users are able to write code and test it in real time

Artificial Intelligence (AI)

the effort to automate intellectual tasks normally performed by humans François Chollet

From **classical programming**...

...to Machine Learning (ML)

searching for useful representations of input data, within a hypothesis space, using guidance from a feedback signal

Feature engineering

FEATURE LEARNING: automatic construction of abstract representations from raw data

Feature engineering in complex systems

The whole is more than the sum of its parts

Aristotle

- Complex systems are such that the collective behavior of constituents cannot be inferred from properties of the parts.
- Example of **real-world complex systems** include: funding relations in global economies, climate, human brain, social interactions, and modern infrastructures.
- The pattern of interactions among components in a complex system can be represented as a network, which provides the framework for feature engineering

Network-based feature engineering

Complex network: a collection of objects (*nodes*), whose mutual relations are modeled as *links*. The strength of these relations is quantified by assigning a *weight* to each link.

The theory of graphs

provides a set of

quantitative methods

to unveil and characterize network properties at all scales: from **single-node centralities** to **global connectivity structures**.

Network-based feature engineering

Complex network: a collection of objects (*nodes*), whose mutual relations are modeled as *links*. The strength of these relations is quantified by assigning a *weight* to each link.

Community detection

algorithms allow to identify sets of nodes with a tendency to interact among themselves more than with nodes in the rest of the network.

Managing, Analysing, and Integrating **Big Data** in Medical **Bioinformatics**

Pancreatic Cancer. J. Pers. Med. 2021. 11. 127.

Relevant gene communties in PD/NC classification

Random Forest framework

Training: randomly subsampled input data is processed in decision trees, grown on randomly selected features

Isolation Forest framework

Isolation Forest is an unsupervised anomaly detection technique

Given some input data, an observation that significantly deviates from the others is called an **anomaly/outlier**. Training: **randomly subsampled input data** is processed in decision trees.

At each node, branching is done on **a randomly selected feature**, using **a random threshold**.

The samples which end up in shorter branches indicate **anomalies** as it was easier for the tree to separate them from other observations.

Anomaly detection with Isolation Forest @ReCaS-Bari

Key idea: using data to teach a computer the proper (*normal*) behavior of a system, to be able to understand when it **deviates from** *normality*

Anomaly detection finds its application in various domains , to efficiently **spot abnormal events** such as fraudulent bank transactions, network intrusion, sudden rise/drop in sales, change in customer behavior.

Specific use-case: highlight traffic anomalies in TCP/IP connections to the central switch/router of the ReCaS-Bari datacenter, providing a first-level monitoring system of the server data.

Other approach for the same use-case: **AUTOENCODER**

Deep Learning

Full automation of feature engineering

DEEP NEURAL NETWORK (DNN)

F. Chollet, Deep Learning with Python (2018)

The learning workfow is

- INCREMENTAL: the input image is transformed into successive representations that are increasingly different from the original one and informative about the output
- **COLLECTIVE:** when an intermediate layer is updated, all the others **automatically adapt** to the change.

State of the art for all **perceptual tasks**

Deep Learning: how it works

The transformation implemented by a layer is parametrized by its **weights**.

Learning means finding **optimal weights**, such that the DNN correctly maps **inputs** to **targets**.

A **loss function** measures the discrepancy between prediction and target.

Backpropagation: the loss score is used as a **feedback signal** to adjust the weights.

F. Chollet, Deep Learning with Python (2018)

Remote sensing for Earth observation

Workflows based on **satellite imagery**, **photogrammetric data**, and **geospatial information systems** for generating new datasets and enabling photointerpretations.

SOME GOALS

- Developing models for **object** and **change detection**
- Monitoring hydro-geomorphological high-risk areas
- Supporting **search** and **rescue** activities

Remote sensing applications with Deep Learning

• LAND COVER CLASSIFICATION: optimized photogrammetric workflow baed on drone images to perform land-cover classification and change-detection monitoring using DL

3 basic classes

water

ground

 URBAN CHANGE DETECTION: DL agorithms to detect changes in urban area extension through the analysis of multispectral satellite images

Convolutional networks

Convolutional networks (CONVNETS) consist of stacks of **convolution** and **max pooling** layers

apply the same geometric transformation to different spatial locations in the input tensor

CONVNETS can learn

- translation-invariant representations
- spatial hierarchies of patterns

- Spatially downsample the data
- Keep feature maps to a reasonable size as the number of features increases

The pre-trained VGG16 model

Using a pretrained CONVNET (**weights assigned**) to exploit **data augmentation** (rotation, horizontal and vertical flip)

VGG16 keras architecture

- 13 **convolutional** layers, 5 **max pooling** layers and 3 **dense** layers
- 16 in VGG16 means that only **16** layers have weights (**learnable parameter layers**)

Autoencoders

An **autoencoder** is a neural network made of two conceptual blocks: **encoder** and **decoder** The input layer is encoded into a **lower-dimensional layer (code)**, which is then decoded to the output layer The network is trained to **reproduce** a specific class of inputs as faithfully as possible

When the input does not belong to the training class, the autoencoder **fails (in a measurable way)** to reproduce the output

The **decrease in reproduction accuracy** allows to spot an **anomaly**

Anomaly detection with autoencoders @ReCaS-Bari

Use-case: highlight traffic anomalies in TCP/IP connections to the ReCaS-Bari central switch/router

ADVANTAGES:

- Only data labelled as "normal" are needed for training
- No need to train the network about the anomalies one wants to detect → the method can find previously unknown anomalies
- Very **limited computing power** to run after training

TOOLS AND RESOURCES:

- Python, Tensorflow (or any other similar tool), Jupyter (optional)
- A decent GPU on a decent server (preliminary tests on a server equipped with 96 CPU cores, 950 GB of RAM, and 4 NVIDIA Tesla V100 GPU)
- Computational time to train the network (once): minutes/hours

The performance-interpretability tradeoff

High performance of complex AI models often comes at the cost of interpretability

We are interested in understanding how each predictor is contributing to a given ML model and how the different predictors interact.

Source: DARPA

Explainable Artificial Intelligence (XAI) comprises many methods that **combine ML** algorithms **with explanatory techniques** to develop explainable solutions.

Local XAI methods: SHAP

SHAP is a XAI method that provides both **instance** feature contribution, and overall feature importance.

Local and **model-agnostic**: predictions are explained at the level of individual instances regardless of the specific ML predictive model.

SHAP learns an interpretable linear model g around each test instance p and estimates feature importance locally:

- dataset $[(\mathbf{p}_1, y_1), (\mathbf{p}_2, y_2), \dots, (\mathbf{p}_T, y_T)]$, with \mathbf{p}_i feature vector and y_i target for sample i •
- the generic pre-trained model f returns a prediction $f(\mathbf{p}_i) = \hat{y}_i$ based on a single input sample \mathbf{p}_i ٠
- SHAP returns a linear model g to explain f by using a simplified input p' that maps to the original ٠ input through a mapping function $p = h_p(p')$ trying to ensure $g(q') \approx f(h_p(q'))$ whenever $q' \approx p'_{23}$

SHAP values and prediction of wildfire occurrence in Italy between 2007 and 2017

SHAP values quantify the contribution of territorial features to RF predictions of wildfire occurrence

SHAP summary plot

SHAP values computed for a binary classification model FIRE YES/NO

SHAP values and prediction of wildfire occurrence in Italy between 2007 and 2017

The SHAP analysis highlights the pivotal role of the **Fire Weather Index (FWI)**, a meteorologically based index used worldwide to estimate fire danger.

Conclusions

- Artificial Intelligence (AI) methods are characterized by a very wide range of potential interdisciplinary applications
- The INFN groups are developing an increasing expertise in applying cutting-edge Artificial Intelligence techniques to reserarch areas of general interest such as genomics, remote sensing and anomaly detection
- ★INFN Bari joined the Second Edition of ML_INFN Hackathon on 13-15 December 2021, which offered students a tutoredhands-on specific ML use cases of INFN interest (Medical Physics, Classification@LHC and Autoencoding for VIRGO/GW)

The use cases for third day ("hackathon" Upon registration, users will be asked to express cases offered. We will try to

Upon registration, users will be asked to express a first and second preference for a one of the use cases offered. We will try to 26

Genomics

A. Monaco, E. Pantaleo, N. Amoroso, A. Lombardi, S. Tangaro, R. Bellotti and collaborators Anomaly detection in TCP/IP connections to the ReCaS-Bari central switch/router

D. Diacono, A. Italiano, S. Nicotri, V. Spinoso, G. Vino

Remote sensing

G. Miniello and collaborators

R. Cilli, N. Amoroso, A. Lombardi, R. Bellotti and collaborators

A. Di Pilato, A. Pompili, A. Di Florio and collaborators

Grazie per l'attenzione!