Elettronica di readout per foto-rivelatori al Silicio

F. LICCIULIÍ francesco.licciulli@ba.infn.it

- Silicon PhotoMultiplier: structure and working principle
- SMART2: an ASIC for the CTA experiment
- PETIROC_FEB: a front-end board for general applications
- Future perspectives

Silicon PhotoMultiplier

Silicon PhotoMultiplier (SiPM):

- Matrix structure of microcell connected in parallel
- Microcell: SPAD (Single Photon Avalanche Diode) operating in Geiger mode
- SPAD: it detects the single photon producing a current pulse whose charge in controlled by the SiPM bias point
- The SiPM output is a fast rising edge current pulse whose charge is proportional to number of detected photons

SMART2: ASIC architecture overview

Analog Section:

- 16 Front-end channels:
 - Direct output: designed for photon-counting
 - Internal output: SiPM mean current measurement
- Global Bias: temperature and power supply independent
- 10 bit 1MHz SAR ADC for channel internal output conversion

Out_Ch15 **Digital Section:**

- Control Unit:
 - 1MHz SPI LVDS link
 - Channel & Global bias adj. bits
 - ADC control

SMART2: Channel architecture overview

SMART2 characterization tests: Fast Path

Characterization setup:

- PCB designed ad-hoc for testing
- PCB with FPGA for remote control: SMART2 configuration
- Oscilloscope ٠

() m) 35

30

25 F

20

15 F

10

100

200

- Laser in pulse mode
- SiPM bias power supply with pico-ammeter
- Acquisition & elaboration software

Measurement conditions: SiPM FBK NUV-HD 6x6 mm², 35 V bias voltage, SMART2 conf. R = 16, C = 5, PZ = 40

config16_5_40_hv35_channel1 CHARGE DISTRIBUTION - tmax 20.0

SMART2 characterization tests: Slow Path & SiPM bias adj.

Slow-path measurements for a single channel, laser in continuous mode: max pulse rate 20 MHz Channel input voltages as a function of the DAC configuration

SMART2 features

- AMS 0.35 μm SiGe technology node
 - 3.3 V power supply
 - Die size: 2.9 mm x 5.1 mm
- 16 front-end channels
 - Input impedance \approx 12.5 Ω
 - Current consumption: 5 mA
- 20-bit global adjustment: gain (8 bits), bandwidth (6 bits), PZ (6 bits)
 - Gain at the Fast Path output: 0.5 mV/pe ÷ 3.5 mV/pe
 - FWHM at the Fast Path output: 8 ns ÷ 20 ns
- 8-bit DAC for SiPM bias adjustment (one per channel):
 - 1.2 V adjustment range
- Slow monitoring of SiPM mean current (16 channels multiplexed)
 - Rate resolution: 20 kHz/LSB ⇔ Current resolution: 25 nA/LSB
- 10-bit ADC
- 1 MHz SPI interface

SMART2 layout

SMART2 for the CTA experiment

SMART2 for CTA telescope (talk by L. Di Venere):

- 1000 SMART2
- 1000 front-end boards
- Semi-automated test stand for mass production test
- 750 front-end boards assembled and tested

SMART2 front-end board

Front-end boards coupled to SiPM matrixes

CTA camera acquisition and control module

9

Events after pedestal subtraction - channel 41

PETIROC_FEB: Architecture overview

Analogue section:

- 32 channel front-end IC
 - Fast trigger line for timing measurements
 - Preamplifier + fast discriminator
 - Time to amplitude converter (res. 37 ps)
 - Charge measurement line
 - Variable time shaper (25 ns to 100 ns)
 - Programmable Sample&Hold
 - 10 bit Wilkinson ADC

Digital section:

- 32 trigger outputs
- 12 μ s conversion time + acquisition

PETIROC_FEB experimental measurements

Single strip of SiPM array output, charge path output

For applications and more measurements: talk by R. Pillera

- New channel architecture developed
- First prototypes produced in LF110 nm
- First characterization tests in March 2022

Thanks