Silicon trackers for CMS and ALICE

Domenico Colella Politecnico and INFN Bari

LHC schedule and silicon tracker upgrades

Ions Commissioning with beam Hardware commissioning/magnet training

Inner Tracking System Upgrade (ITS2)

ITS3

2

CMS tracker upgrade for the HL-LHC

High Luminosity LHC

- Instantaneous luminosity: $5 7.5 \times 10^{34} cm^{-2} s^{-1} \rightarrow$ High pileup (140 200)
- Integrated luminosity: $3 4 ab^{-1} \rightarrow$ High irradiation ($2 \times 10^{16} n_{eq}/cm^2$)

Current CMS Outer Tracker and Pixel Detector

will not survive the HL-LHC radiation conditions

CMS Phase-2 upgrade

Requirements

- 1. Enhanced radiation tolerance: sustaining a Total Integrated Dose (TID) up to ten times larger
- 2. Ability to participate in first level trigger (L1) decisions
- 3. **Higher granularity** in order to keep the channel occupancy below 1%
- 4. Extended tracking coverage (up to $|\eta| = 4$)
- 5. **Reduced material budget** for improved tracking performance

Δ

R&D project plan: design of thin, radiation tolerant, small pitch pixel sensors From 2015 several R&D submissions of prototype by HPK, FBK and CNM

0

sens

Planar

Planar Active Edge sensor

- Planar n-in-p pixel sensor
- Active edge technology
- Low active thickness
- Pixel size reduced by a factor 6.
- Two pixel cells: $50 \times 50 \, \mu m^2$ and $100 \times 25 \, \mu m^2$

🇄 3D sensor

- Drift path perpendicular to the active depth: short drift distance 3D sensor 30-50 μm vs planar sensor 100-150 μm
- Advantages vs plane sensors:
 - smaller bias sensor needed for efficient charge collection
 - less trapping expected in irradiated sensors

CMS tracker - Inner Tracker (IT)

5

sensor

3D

CMS tracker - Inner Tracker (IT)

- Activity done by a XXXII Cycle Ph.D. student
- Charge collection efficiency study for sensors developed by INFN-FBK R&D
 - Planar AE (PAE) and 3D sensors investigated and compared
 - Usage of Sr-90 radioactive source and time-over-threshold technique
 - ToT signal measured in neighbouring pixels are clustered

The collected charge is ~8856 e⁻ which translates to ~68 e⁻/ μ m for the 130 μ m sensor thickness.

Compatible with expectations.

Conclusions

- The collection charge differences is around ~5% between 3D and PAE sensors for the same active and total thickness (130 and 200 µm, respectively)
- Charge collection is penalised in the thicker 3D sensor (handle wafer thickness of 500 μm vs 70 μm)
- The 3D sensor reach the plateau at Vbias ~ 5 V, while PAE sensor at Vbias ~ 20 V
- In 3D pixel sensors the short inter-electrode distance and the lower operational bias voltage give an important advantage over the standard planar pixel sensors before and after irradiation
- 3D sensor are safely operated with a large margin with respect to the depletion voltage. This is needed because of the fact that the upgraded CMS detector will be powered according to a serial powering scheme with up to eight modules in a serial chain.

- Given the high instantaneous luminosity during HL-LHC it is fundamental to keep data rate under control (more selective at L1 trigger)
- Most of charged particles have low pT
- Outer Tracker (OT) must perform a pT (> 2-3 GeV/c) selection at readout level (40 MHz) in order to reduce the L1 tracking input data size

OT module with hardware integrated trigger

- Two parallel silicon sensors separated by few mm
- Flex hybrid to get data from both sensors to one ASIC and select track "stubs"
- Different sensor spacing for different detector region
- Tunable correlation windows
- Two geometrical configurations: flat and tilted
 - remove acceptance reduction due to not formed stubs (hits on uncorrelated module halves)
 - sizeable reduction of needed modules

TILTED SECTION

0.4-1.1

TILTED SECTION

0.8-1 m

7

2: PS-p sensor

4: AI-CF spacer

6: Power hybrid

7: Opto hybrid 8: CFRP support 9: CFRP baseplate 10: High voltage tab 11: Temperature sensor 12: Kapton HV isolators

3: Macro-pixel ASICs

5: Front-end hybrid

8

z [mm]

1: PS-s sensor

TBPS - Tracker Barrel with PS modules **TB2S** - Tracker Barrel with 2S modules **TEDD** - Tracker Endcap Double Disk

Each PS module is a functional unit containing:

- Silicon strip sensor + Macro pixel sensor
- Power Hybrid (POH)
 - backend power system + DC-DC converters
- Readout Hybrid (ROH)
 - DTC (Data, Trigger and Control) system via optical link
 - IpGBT (Low Power Gigabit Transceiver), VTRx+ (Versatile Link Plus Transceiver)
- Frontend Hydrid (FEH)
 - Macro-Pixel ASIC (MPA) and Short-Strip ASIC (SSA) for sensor readout
 - Stub finding is performed by MPA SSA sends cluster and L1 information to MPA to enable match in space and time
 - Data concentrator (CIC) chip receives L1 information and readout data

POH

Pixel-Strip (PS) module

INFN strong commitment in the assembly of TBPS (1920 PS modules, ≈ 40 m² detector surface)

Big effort in Bari and Perugia to complete the assembly line

- New Glue dispensing robot, Nordson EV
- New bonding machine
- Vacuum line and assembly workflow optimisation
- Jigs production and testing

2019 mainly dedicated to mechanical prototype construction

- Alignment based and sensor dicing, lower precision obtainable with mechanical parts
- Waiting for dummy sensors (MaPSA)
- 2020 mainly dedicated to build dummy modules and validate the procedures
 - Received 2 dummy sensors (MaPSA) per center
- 2021 first functional modules assembling
 - Foreseen in 2020 and delayed due to material procurement difficulties
 - Stringent constraints on sensor-to-sensor alignment and rotation

State of the art in Bari

- 2 Mechanical prototypes built
 - Mechanical spacers (done by an external company) + Mechanical baseplate (done in Bari) + Mechanical sensors and MPA in stainless steel (done by an external company)
- 1 Semi-dummy module built
 - 1 dummy Hybrid, 1 PS-s dummy and 1 dummy backplane
 - no dummy MaPSA available \rightarrow mechanical component
- Bonding and encapsulation studies performed on strip side
 - Real bonding loop: ~3 mm long and 215 μm tall
 - Pull results well within spec
- 3 functional modules assembled
 - At the moment under electrical verification
 - Missing components to complete the assembly of other two modules
- 1000 PS modules to be assembled

Scientific objectives

- Study of Central Exclusive Production (CEP) in p-p collisions during standard low- *β** runs at high luminosity
 - *EWK*: LHC used as photon-photon collider: measure $\gamma \gamma \rightarrow W^+W^-$, e^+e^- , $\mu^+\mu^-$, $\tau^+\tau^-$; search for AQGC with high sensitivity, search for SM forbidden $ZZ\gamma\gamma$, $\gamma\gamma\gamma\gamma\gamma$ couplings
 - QCD: exclusive two and three jet events, with M up to ~700-800 GeV; Test of pQCD mechanisms of exclusive production; gluon jet samples with small component of quark jets
 - BSM: Search for new resonances in CEP: clean events (no underlying pp event); independent mass measurement from pp system, J^{PC} quantum numbers 0⁺⁺, 2⁺⁺
- CT-PPS has been installed in the RP infrastructure and operated since 2016
- ▷ CT-PPS is now part of the CMS detector and has been renamed PPS → It will provide forward proton tagging capability to CMS

Precision Proton Spectrometer

- Diamond based timing detectors, originally developed for TOTEM upgrade and the used in CT-PPS
- Detectors track the forward proton and measure the arrival time, to help the pile-up mitigation
- Each station is equipped with 4 double diamond planes
- A custom made front-end electronics, based on the NINO chip, design to reduce timing degradation in digitization phase
- The readout is based on the HPTDC chip and SAMPIC digitiser chip (fast sampler @ 7.8 Gsa/s). The latter will be available for commissioning phase and sensor monitoring
- A timing station for each arm was already present in Run 2 and two new stations, one per arm, are under installation for Run 3.

Bari team contributions

- Diamond detectors responsibility
- Readout system design
- Clock distribution system design

ITS2 for LHC Run 3

ITS2 installed and under commissioning

ITS2 will provide unprecedented performances \rightarrow pointing resolution: 15 µm at p_T of 1 GeV/c \rightarrow tracking efficiency: above 90% for p_T > 200 MeV/c

ITS2 for LHC Run 3

ITS2 installed and under commissioning

ITS3 for LHC Run 4

Can we get closer to the IP? Can we reduce the material budget?

The way: replace detector staves (3 innermost layers) by wafer-scale sensors bent around the beam pipe

Joint effort with EIC_NET project and preparatory activity for ALICE3 (Run5 and beyond)

→ dedicated talk by A. Pastore tomorrow

ALICE tracker - Motivation for ITS3

Observations

- » Silign makes only about 15% of total material
- » Irreal arities due to support/cooling and overlap

Improvements

- » Removal of water cooling
 - \rightarrow **possible** if power consumption stays below 20 mW/cm²
 - \rightarrow move to (low flow) air cooling system
- » <u>Removal circuit board</u> (power+data)
 - $\rightarrow \textbf{possible}$ if integrated on chip
- » Removal of mechanical support
 - \rightarrow **benefit** from increased stiffness by rolling Si wafers

ALICE tracker - ITS3 detector concept

Key ingredients

- » Wafer-scale chips (up to ~28x10 cm), fabricated using stitching
- » Sensor thickness 20-40 μm
- » Chips bent in cylindrical shape at target radii
- » Si MAPS sensor based on 65 nm technology
- » Carbon foam structures
- » Smaller beam pipe diameter and wall thickness (0.14% X₀)

The whole detector will comprise six chips (current ITS IB: 432) and barely anything else!

Key benefits

- » Extremely low material budget: 0.02-0.04% X₀
- » Homogeneous material distribution: negligible systematic error from material distribution

detection layers

	10.0	24.0	30.0	
Length of sensitive area (mm)	300.0			
Pseudo-rapidity coverage	±2.5	±2.3	±2.0	
Active-area (cm ²)	610	816	1016	
Pixel sensor dimension (mm ²)	280×56.5	280 x 75.5	280 x 94	
Number of sensors per layer	2			
Pixel size (μm²)	O (10 x 10)			

ITS3 project R&D lines

Chip design

New, stitched sensor in 65 nm technology on 300 mm wafers

Sensor performance

Tests with existing bent ALPIDE chips (ITS2) for (in-beam) performance assessment

Detector Integration

Tests with wafer-scale dummy chips for mechanical integration

17

ALICE tracker - Chip design

MLR1 SUBMISSION AND TEST + ER1

» MLR1 is the first submission in the TowerJazz 65 nm technology

- scoped within CERN EP R&D WP1.2, but significant drive from ITS3
- this technology will allow to build larger sensors (300 mm wafers)
- » More than just "first test structures"
 - transistor test structures
 - analog building blocks (band gaps, LVDS drivers, etc.)
 - various diode matrices (small and large)
 - digital test matrices
 - Essentially covers the initial goals of MPW1 and MPW2

~15 mm

- » First wafers received
 - laboratory characterisation ongoing
 - test beam campaign (PS, SPS and DESY) in Oct-Dec 2021
 - characterisation of bent test structure
- » ER1 Stitched Sensor prototype
 - Key requirements and architectures defined (sensor, primary features, dimensions and floorpan, powering scheme, I/Os and global busses)
 - INFN Bari involvement in: SEU memory measurement chip design and characterisation (G. De Robertis) and development of Bias and Monitoring network of the MOSS chip (F. Loddo)

Chip design

10 um AMP

20 µm AMP

10 µm AMP

10 um OPAMP

ALICE tracker - Sensor performance TESTS IN LAB AND IN BEAM

» Laboratory and test beam measurements (Jun 2020) allow to conclude that chip performance doesn't change after bending

Sensor performance

- Pixel matrix threshold distribution does not change when sensor is bent
- Efficiency above 99.9% at a threshold of 100 e⁻ (normal operating point)

- Activity done by a XXXV Cycle Ph.D. student
 - Electrical and functional characterisation of bent ALPIDE chips
 - Participation in test beam and data analysis
- Foreseen involvement in MLR1 APTS chip characterisation

ALICE tracker - Bending procedure

WAFER-SCALE CHIPS BENDING

- » CERN team developed procedure for silicon bending in a repeatable and reliable way
- » Bending tool: tensioned mylar foil wrapping around a cylindrical mandrel

Layer 2+1

Layer 2

» <u>Bending tools available in Bari (produced in our workshop)</u> → Already contributing in procedure improvement

Detector Integration

ALICE tracker - Super-ALPIDE

Exoskeleton

Designed in Bari

3D printed

V. Valentino

» Super-ALPIDE

- 18 not diced ALPIDE chips
- dimensions close to the ones for L0 sensor
- verify bending tools for large-size working chips
- · verify mechanical support alignment tools
- develop wire-bonding over bent surface tools
- develop first bent flex prototype (for powering and data streaming)
- assemble first working large dimension bent sensor

Edge-FPC Designed in Bari M. Rizzi, G. De Robertis

ALICE tracker - Super-ALPIDE

TEAM G. E. Bruno, P. Cariola, D. Colella, V. Manzari, S. Martiradonna, C. Pastore, A. G. Torres Ramos, V. Valentino

OTHER ALICE TRACKER RELATED ACTIVITIES AND EIC SYNERGY F. Barile, F. Colamaria, D. Elia, A. Mastroserio, A. Palasciano, G. Tassielli

Timeline of silicon tracker assembly in Bari...

Backup

A next-generation LHC HI (soft-QCD) experiment

- » Compact, all-silicon "nearly massless" detector with excellent low- p_T tracking performance
- » Increase rate capabilities: luminosities x20-x50 higher
- » Unprecedented insight into QGP

Expression of Interest (2019): <u>https://arxiv.org/abs/1902.01211</u> Lol under preparation

ALICE tracker

Main R&D challenges

» Inner tracker

- \rightarrow ultra-thin layout: flexible wafer-scale sensors (MAPS/ITS3)
- \rightarrow minimal distance from IP requires retractable detector
- \rightarrow position resolution O(1 μm) requires small pixel pitch
- » Outer tracker
 - \rightarrow large areas to instrument O(100 m²): develop cost-effective sensors
 - \rightarrow low material budget requires low-weight support and services
- » Time of Flight
 - \rightarrow TOF resolution < 20 ps needed on the system level requires advances both on sensors and microelectronics
 - \rightarrow large areas to instrument: develop cost-effective sensors

Backup

INFN Outer Tracker (OT) Phase 2 contribution

To deliver Tilted Barrel (TBPS) 72 rings (36 rings per side) mounted, integrated and tested with 1920 PS modules ($\approx 40 \text{ m}^2$ surface detector) and contribute to Track Trigger. Production of necessary spares is implicit but not specified in this document. In summary:

- Development and Qualification
 - Service (Power and Opto) Hybrids testing (Genova)
 - FE Hybrids testing (Catania)
 - Silicon Sensors Process Qualification and Sensor Testing (Perugia)
 - ASIC sample qualification and testing (Padova)
- Contribution to development, qualification of commons systems
 - Track Trigger electronics system (Pisa)
 - DAQ and Control Systems (Pisa, Catania, Genova)
 - Power supply backend (Firenze, Perugia)
 - Safety System (Pisa)
 - Silicon Sensors Process Qualification and Sensor Testing (Perugia)
- Construction and integration of PS Modules (1956 installed)
 - Module assembly, wire bonding and testing (Bari, Perugia)
 - Module Burn in and Calibration (Pisa)
 - Module mechanical integration and testing in 72 rings (Pisa + all)

- INFN strong commitment in the assembly of TBPS (1920 PS modules, ≈ 40 m² detector surface)
- Big effort in Bari and Perugia to complete the assembly line
 - New Glue dispensing robot, Nordson EV
 - New bonding machine
 - Vacuum line and assembly workflow optimisation
 - Jigs production and testing
- ▶ 2019 mainly dedicated to mechanical prototype construction
 - Alignment based and sensor dicing, lower precision obtainable with mechanical parts
 - Waiting for dummy sensors (MaPSA)
- 2020 mainly dedicated to build dummy modules and validate the procedures
 - Received 2 dummy sensors (MaPSA) per center
- Delay in the center qualification (foreseen in 2020) with the production of 5 functional modules (procurement of MaPSA, hybrids...) → milestone moved to 2021
 - Stringent constraints on sensor-to-sensor alignment and rotation

Backup

Backup

Precision Jigs designed and prototyped home for the module construction

Light flavour particle production in ALICE

ALICE is designed to study the physics of strongly interacting matter under extreme temperature and energy densities to investigate the properties of the **quark-gluon plasma**

LHC Run1 and Run2 data taking				
Colliding System	Year(s)	√S _{NN} (TeV)		
рр	2009-2013 2015, 2017 2015-2018	0.9, 2.76, 7, 8 5.02 13		
p-Pb	2013 2016	5.02 5.02, 8.16		
Xe-Xe	2017	5,44		
Pb-Pb	2010-2011 2015-2018	2.76 5.02		

Published and Preliminary results available for most light-flavour and strange hadron species in all the colliding systems provided by LHC: π , K[±], p, K^{*0}, ϕ , Ξ^{*0} , $\Sigma^{*\pm}$, K⁰, Λ , Ξ , Ω , d, t, ³He, ³_AH.

The ALICE detector in LHC Run 1 and Run 2

Multi-purpose detector at the LHC with unique particle identification capabilities and tracking down to very low momenta

Congresso INFN 2022 Bari | 3 February 2022 | Domenico Colella

The ALICE detector in LHC Run 1 and Run 2

Multi-purpose detector at the LHC with unique particle identification capabilities and tracking down to very low momenta

Small and large system definition

pp

Pb-Pb

<u>Central Barrel Detectors (|n| < 1)</u>

Inner Tracking System (ITS) » Tracking, Vertexing, Triggering, Low momentum PID (dE/dx) Time-Projection Chamber (TPC) » Tracking, PID (dE/dx) Time-of-flight detector (TOF) »PID (time-of-flight) High Momentum PID (HMPID) »PID (Cherenkov) VZERO » Triggering, Event multiplicity determination

» Commonly referred to the colliding system size (ee < pp < p-A < A-A)

✓ Multiplicity estimator used to categorise event according to its

» In the following referred to the created medium size

✓ Defined in terms of charge particle multiplicity

✓ Correspondence to the previous true only on average

multiplicity (best if unbiased from particle under study)

Backup

LHC Run3/4 program and ALICE Upgrade strategy

4 key objectives identified by HL/HE-LHC working group 5 for high-density QCD at LHC after LS2

- 1. Characterising the microscopic long-wavelength QGP properties with unprecedented precision
- 2. Accessing the microscopic parton dynamics underlying QGP properties
- 3. Developing a unified picture of partial production from small (pp) to larger (p-A and A-A) systems
- Probing parton densities in nuclei in a broad (x, Q2) kinematic range and searching for possible onset of parton saturation

Proposed run schedule for Run 3/4

System	√s, √sNN	Lint	Note
Pb-Pb	5.5 TeV	13 nb-1	3 nb ⁻¹ low B-field
p-Pb	8.8 TeV	1.2 pb ⁻¹	
рр	14 TeV	200 pb ⁻¹	High-multiplicity triggered
	8.8 TeV	3 pb-1	
	5.5 TeV	6 pb-1	
0-0	7 TeV	500 µb-1	pilot run
р-О	9.9 TeV	200 µb ⁻¹	

ALICE Upgrade strategy

- » New silicon trackers: ITS (mid-rapidity), MFT (forward rapidity)
- » New TPC read-out chambers (GEMs) and electronics
- » New Fast Interaction Trigger (FIT)
- » New Read-out of other detectors (TOF, TRD, Muon arm, ZDC,...)
- » Upgrade of Online and Offline systems (O² project)

Backup

Roman pots in Run II & III

- In <u>RunII</u> the roman pots proven to be a "general purpose" dependable detector infrastructure able to host up to 4 different detectors types:
 - Si strips, TOTEM tracking detectors;
 - Si 3D pixels, CT-PPS tracking detectors;
 - Diamond base timing detectors, originally developed for TOTEM upgrade and then used in CT-PPS;
 - UFSD (Ultra Fast Silicon Detectors), originally developed for CT-PPS and then used in the last TOTEM special run.
- Tracking detectors time evolution (per arm):
 - 2016: All stations equipped with TOTEM Si strips;
 - 2017: 1 CT-PPS 3D pixel horizontal station;
 - 2018: 2 CT-PPS 3D pixel horizontal stations.
 - Run III: Configuration will remain the latest used for Run II. 3D pixel consolidation and mechanical upgrades.
- Timing detectors time evolution (per arm):
 - 2016: TOTEM 4 single diamond plane detectors (SD), designed for the vertical pots, moved to the horizontal to boost CT-PPS start of operations;
 - 2017: TOTEM 3 SD and 1 CT-PPS UFSD planes, in one horizontal RP;
 - 2018: TOTEM 2 SD and 2 double diamond sensor (DD) planes in the horizontal RP, 4 Ct-PPS UFSD planes in the vertical, used for TOTEM special runs.
 - Run III: Consolidation and electronics upgrades of the SD detectors and a new timing horizontal pot equipped with 4 DD planes.
 PPS

4

3/02/2022

PPS

- Each RP was equipped with a stack of 10 silicon strip detectors, designed with the specific objective of reducing the insensitive area at the edge facing the beam to only a few tens of μm

