Strategy for the total energy reconstruction in the calorimeter

Francesca and Lorenzo

Energy reconstruction

- For each event the raw charge deposited in a crystal is converted in energy according to the following steps:
- 1. Temperature correction: charge -> charge_tcorr
- 2. Crystal equalizations: charge_tcorr -> charge_tcorr_eq
- 3. Range correction: charge_tcorr_eq -> charge_tcorr_eq_pcorr
- 4. Conversion from charge to energy: charge_tcorr_eq_pcorr -> energy

Temperature correction

For the moment the temperature reading is not integrated in the DAQ but read from an external file. We will modify as soon as the integration will be ready.

//
<pre>1 TACAparCal* parcal = (TACAparCal*) fpParCal->Object();</pre>
<pre>Double_t T0 = parcal->GetTemperatureCry(crysId);</pre>
Double_t m1 = fTcorr1->Eval(charge); Double_t m2 = fTcorr2->Eval(charge);
<pre>Double_t m0 = m1 + ((m2-m1)/(fT2-fT1))*(T0-fT1);</pre>
Double_t delta = (fT1 - T0) * m0;
Double_t charge_tcorr = charge + delta;
return charge_tcorr;

Visible dependency between charge and angular coefficient

 $Q_0 = Q_{0,raw} + m_0 \cdot (T_{work} - T_0)$

Crystal equalizations

- The correction factor for equalization is presently taken from a calibration file contained in each experimental campaign folder (TACA_Temperature_Calibration_perCry.cal)
 - We have the intercalibration factors for three crystals

Range correction

- The energy/amplitude depends on the particle position inside the crystal
- The amplitude of the signal decreases when the beam is closer to the SiPM (optical photons absorption)
- Not implemented in Shoe

Conversion from charge to energy

- Linear calibration with p0 = 0 and p1 = 1
- E = p0 + p1*charge
- How to convert from charge to energy if we have not identified the Z of the particle? (Birks effect)
- Cluster reconstruction

Double_t TACAactNtuHit::GetEnergy(Double_t rawenergy, Int_t crysId)
{
 TACAparCal* p_parcal = (TACAparCal*) fpParCal->Object();
 Double_t p0 = p_parcal->GetElossParam(crysId,0);
 Double_t p1 = p_parcal->GetElossParam(crysId,1);
 return p0 + p1 * rawenergy;

//fake calibration (gtraini) return raw value meanwhile
// return rawenergy;

Conclusions

Next steps:

- Temperature reading integrated in the DAQ
- Range correction?
- Conversion from charge to energy? Can we obtain information from TOF?