NR and ER discrimination using Deep Learning Models

CYGNO-Reconstruction Meeting

Atul Prajapati

Random Forest and Gradient Boosted Classifiers

RFC

- It can build each tree independently.
- Results are combined at the end of the process.

GBC

- It builds one tree at a time.
- It combines results along the way.

Old Results with smaller samples

- Rejection = Total No. of ER/ No. of ER left
- Rejection and signal efficiency is computed in each energy bin.

Training with larger samples of Electron Recoils

- 1. Trained 3 models
 - a. Random Forest Classifier (RFC)
 - b. Gradient Boosted Classifier (GBC)
 - c. Deep Neural Network (DNN)
- 2. Data Division:
 - a. Training: 80%
 - b. Testing : 20%
- 3. Total samples size: 60846 samples (NR+ER)

Results

D. No. of Samples

Helium recoils	Gas Mixture	Pressure	Density	Drift field	σ_T	$1/(\rho \cdot \sigma_T)$
10 ⁶ Combined MaxDen (7 keVee F) MaxDen (12 keVee He)		[Torr]	$\left[\mathrm{g/cm}^3\right]$	[V/cm]	$[\mu m/\sqrt{cm}]$	$\left[\frac{\mathrm{cm}^{7/2}}{\mathrm{g}\cdot\mathrm{\mu m}}\right]$
G 10 ⁵ ← ClustThres (7 keVee F) ← ClustThres (12 KeVee He)	80% He + 10% CF ₄ +	60	$6.69 imes 10^{-5}$	40.6	398	37.6
10 ⁴ NumClust	10% CHF ₃ [this work]					
	97.4% He + $2.6\% SF_6$	760	3.35×10^{-4}	_	78.6	38.0
	[15]					
	CF_{4} [20]	100	$5.17 imes 10^{-4}$	400	184	10.5
101	$70\% \text{ CF}_4 + 28\% \text{ CHF}_3 +$	37.5	1.81×10^{-4}	180	253	21.8
Service and the service of the servi	$2\% C_4 H_1 0$ [21]					
4 6 8 10 12 14	60% He + $40%$ CF ₄ [22]	760	$1.68 imes 10^{-3}$	500	150	3.97
Energy [keVee]						

 $1/(\rho \cdot \sigma T)$ value strongly impacts electron rejection capabilities.

Results

Observables for recoil identification in gas TPCs (arXiv:2012.13649v1)

original track881

Original

A. Signal Efficiency

Models	Signal Eff.	Bkg. Eff.
RFC	0.40	0.0019
	0.50	0.0045
GBC	0.40	0.0041
	0.50	0.0082
DNN	0.40	0.0045
	0.50	0.0085
Selection on	0.40	0.008
Delta	0.50	0.035

Table 1: Results from all the models with 40 and 50% efficiency on signal in each energy bin and the background is from all then energy bin. Whereas 40 and 50% efficiency with selection on delta is for the whole energy range.

B. Background