LHCb Hardware activities

Riunione gr1 14/12/2021 G. Simi on behalf of the LHCb group

Outline

- RICH
- TIMESPOT & VELO
- ECAL

LHCb Upgrade Schedule

(Approved schedule as of Nov 2020)

	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	20
CERN	LS2				Run 3		LS3			Run 4		LS4	Run 5 - 6		
	LHC			С	; 13 TeV						14 TeV HL-LHC				
rncp	Upgrade I			2	2×10 ³³ cm ⁻² s ⁻¹ 23 fb ⁻¹		LS3 Enhancements		ments	2×10 ³³ cm ⁻² s ⁻¹ 50 fb ⁻¹		Upgr. II	1.5×10 ³⁴ cm 300 fb ⁻¹	⁻² s ⁻¹	

G. Simi, M.Benettoni, M. Zago

RICH Upgrade I

• RICH Upgrade I (2020-2021)

- R&D mechanics and cooling
- Responsibility for mechanical and cooling system design and construction
- Responsibility for characterization of PMT installed
- Responsibility for calibration and threshold
- Commissioning and test beams (limited)

• Request

- A table to hold the PMT test station to be used for new or substituted PMT
 - The only test station capable of PMT characterization compatible with production
- Cabinet for spare PMT

G. Simi, M.Benettoni, M. Zago

RICH Upgrade I

• RICH Upgrade I (2020-2021)

- R&D mechanics and cooling
- Responsibility for mechanical and cooling system design and construction
- Responsibility for characterization of PMT installed
- Responsibility for calibration and threshold
- Commissioning and test beams (limited)

• Request

- A table to hold the PMT test station to be used for new or substituted PMT
 - The only test station capable of PMT characterization compatible with production
- Cabinet for spare PMT

RICH Upgrade I

- RICH Upgrade I (2020-2021)
 - R&D mechanics and cooling
 - Responsibility for mechanical and cooling system design and construction
 - Responsibility for characterization of PMT installed
 - Responsibility for calibration and threshold
 - Commissioning and test beams (limited)
- Request
 - A table to hold the PMT test station to be used for new or substituted PMT
 - The only test station capable of PMT characterization compatible with production
 - Cabinet for spare PMT

First Cherenkov Rings in LHC pilot run

G. Simi, A. Lupato, S. Gallorini, L. Modenese

RICH Upgrade I

• RICH Upgrade I (2020-2021)

- R&D mechanics and cooling
- Responsibility for mechanical and cooling system design and construction
- Responsibility for characterization of PMT installed
- Responsibility for calibration and threshold
- Commissioning and test beams (limited)

• Request

- A **table** to hold the PMT test station to be used for new or substituted PMT
 - The only test station capable of PMT characterization compatible with production
- Cabinet (1 shelf) for spare PMT

RICH Upgrade II

RICH Upgrade II

- Motivation:
 - Increase granularity for Cerenkov ring reconstruction in high luminosity LHC runs
- Upgrade:
 - o optics, photosensors, time-resolved readout electronics, time calibration system, mechanics, cooling
- Photosensors choices:
 - MaPMT, SiPM at cryo temperatures, MCP
- Padova:
 - Characterization of SiPM: signals, time resolution, afterpulse [G.Simi, F. Borgato] collaboration with Ferrara
 - R&D on rad hardness (critical item) of SiPM at cryo temp [G. Simi, F. Borgato] collaboration with Milano
- Padova:
 - Mechanical design and cooling system responsibility [M.Benettoni]
- Framework TDR in progress
- Requests:
 - a table shared with TIMESPOT & VELO for CAEN digitizer, laser
 - Assembly area for mechanics and cooling R&D: time scale starting from 2023

TIMESPOT

- 4-years INFN-funded gr5 project TIMESPOT
- Development of radiation hard 3D fast pixel sensors for tracking in high luminosity LHC - case study LHCb VELO
- Spatial resolution 10 µm
- Time resolution 20 ps
- Radiation Hardness >10¹⁶ 1MeV n_{eq}/cm²
- Sensor developed at FBK showed resolution with pion test beam at PSI better than 20ps

G. Simi, F. Borgato (PhD)

TIMESPOT & VELO

- Padova: Sensor static characterization
- Padova: Sensor efficiency and time resolution tested at Legnaro with innovative technique at microbeam
- Padova: Test beam and demonstrator design

TIMESPOT & VELO Perspectives

- **Next year** bring to conclusion the project
 - Full demonstrator construction and beam test
 - Static and dynamic characterization of sensor after irradiation
 - Readout electronics development and radiation hardness

• Longer term perspective:

- Official involvement of Italian groups in the VELO
- Discussion has started

• Space requests:

- A **small table** for laser + oscilloscope + CAEN digitizer
- Cabinet space for sensors
- Occasional use of Lab Silici

ECAL upgrade activities at LHCb Padova

D. Lucchesi, L. Sestini, D. Zuliani

Zuliani, Sestini

Motivation

- During Run 5 the ECAL will be redesigned
 - High luminosity
 - High radiation on sensors (near the beam pipe)
- Therefore the following requirements are needed:
 - New geometry (SPACAL, Shashlik)
 - New cells dimension
 - New materials

- Main focus in high p_τ physics
- $Z \rightarrow ee$ is used as main channel
 - Test different energy and time resolutions
 - Study Bremsstrahlung recovery
 - Study ADC saturation (study of double gain ADC)
- Studies are ongoing, first results in fTDR for Upgrade 2

Zuliani

Test beams

- Test-beam @ CERN (August 2021) to test different ECAL prototypes
 - Shashlik
 - SPACAL Pb/Poly
 - SPACAL W/GAGG
 - SPACAL W/Poly
- Studies on time and energy resolution

- Time resolution ps for beam energy E_{beam} > 20 GeV
- Results are in agreement with simulations and previous test-beams @ DESY
- New test-beam campaign in November 2021, focused on energy resolution studies
- Detailed analysis has just started, results are coming soon

Zuliani, Sestini

Time layer

- Collaboration with LHCb-Bologna on the development of a time layer.
- Based on micro-channel plates detector (LAPPD).
- Currently characterized in Bologna laboratory, data acquired in test beams at DESY and CERN.
- In particular we are interested in the development of the time layer digital read-out.

Sestini

Digital read-out

- FPGA-based digital back-end.
- We would like to develop the FPGA firmware for the Time layer.
- We have bought a CAEN module equipped with FPGA (CAEN DT5495).
- It will arrive soon in Padova, to be programmed here. We need a collocation for this device.
- Integration tests in Bologna, and hopefully the complete chain will be taken at test beams.
- Our long-term goal is to develop a machine-learning based ECAL reconstruction on FPGA.

