INFN-Pisa Scientific Seminars 2021

Promises, Mysteries and Challenges of the radiotherapy of the future (?)

Emanuele Scifoni

Trento Institute for Fundamental Physics and Applications

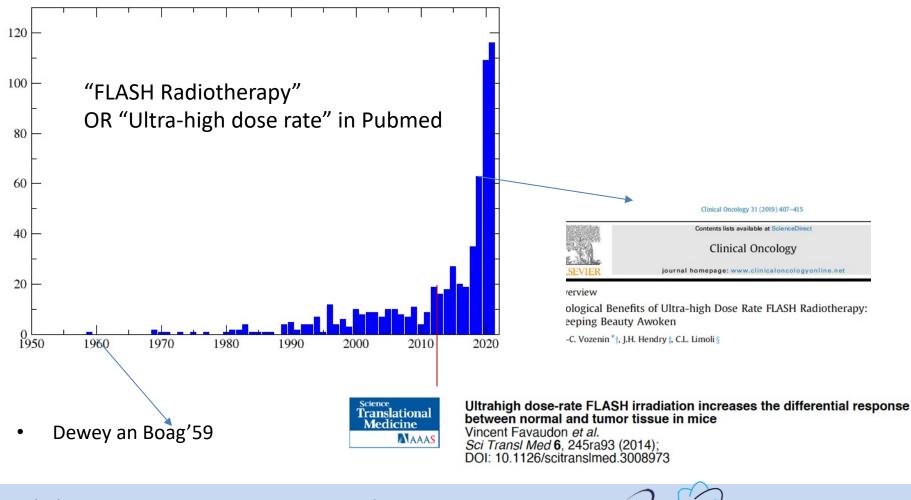
E. Scifoni - iNFN Pisa Seminars

TIFPA

Outline

- The Promises: What is FLASH? Historical background
- The Mystery: Radiobiological mechanism Does it really work? And how?
- The Challenges:
 - Dosimetry
 - Dose Delivery
 - (and Planning?)

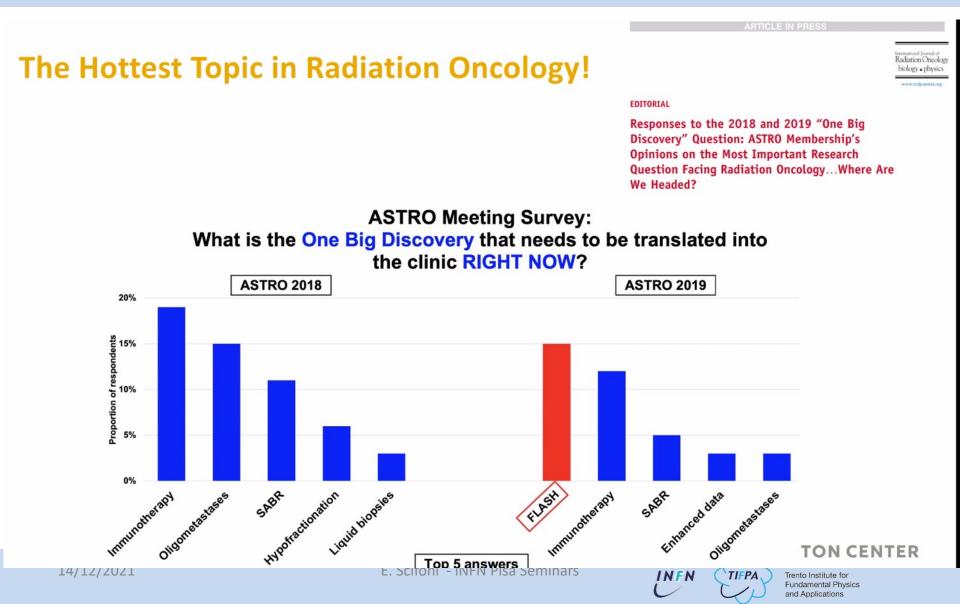
If it work, can we control it? If It work and we can control it can we give it to patients?



• What is FLASH?

INFN CTIEPA

FLASH: an exploding topic



E. Scifoni - iNFN Pisa Seminars

INFN

TIFPA

The last 2 year boom

FRPT 2021 – FLASH Radiotherapy and Particle Therapy Conference

Topic A: Radiation Modalities

- A1 Which conditions (radiation type, dose rate, dose per pulse, total irradiation time) are optimal for FLASH RT?
- A2 Quality assurance and real time measurement of FLASH doses: ionisation chambers, film, solid state detectors, scintillators
- A3 How FLASH RT is delivered: electrons, photons, protons, heavy ions: equipment involved, how beam is delivered, experimental end stations etc?
- A4 FLASH radiation protection; simulation and measurement for research and clinical treatment
- A5 Spatially fractionated radiotherapy, mini beams, micro beams etc.
- A6 New horizons in FLASH, spatially fractionated radiotherapy and particle therapy: Laser driven ions, VHEE etc.
- A7 Abstracts from INSPIRE and UHD Pulse projects; can be from those involved in the projects or through collaborative projects (for example trans national access projects through INSPIRE)

Topic B: Mechanisms

- B1 Physics: modelling the FLASH effect, Geant 4
 DNA, other code
- B2 Physico-Chemistry: FLASH chemistry, oxygen contribution, ROS
- B3 Biology: molecular level, DNA damage, oxidative stress, inflammation; cellular level; tissue level
- B4 In vitro and in vivo studies,
- B5 Flash and drug / immune radiation combinations

700 Participants!

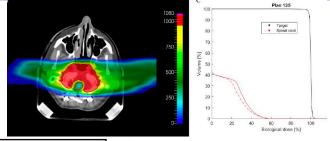
Topic C: Flash in the Clinic

2

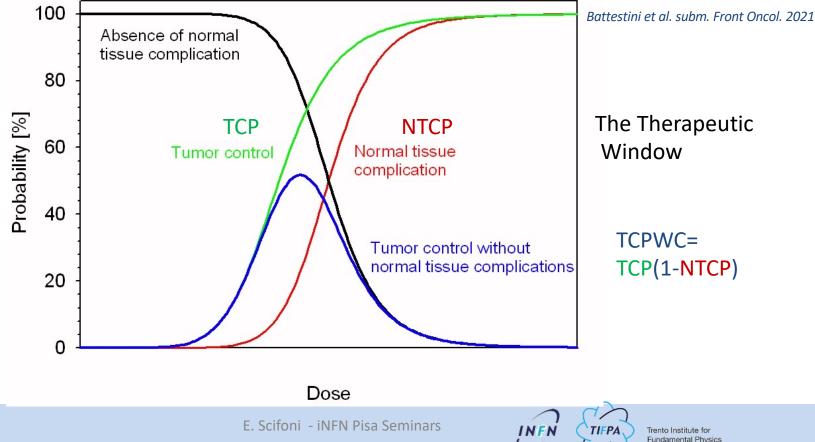
D

- C1 QA and dosimetry
- C2 TPS development for FLASH
- C3 Treatment regimen, fractionation, volume, combination
- C4 Clinical trial design and methodology, regulations
- C5 Patient selection (how many patients might benefit from FLASH?), FLASH clinical workflow, health economics
- C6 Clinical trial: FLASH-IORT and superficial tumours; FLASH – proton; synchrotron trial; innovative trials

Opening Sessions and Invited Talks	Sponsored Sessions	Networking Events
FLASH Modalities	FLASH Mechanisms	FLASH Clinic
INSPIRE	FLASH Teaching Lecture	UHD Pulse


VIENNA AUSTRIA

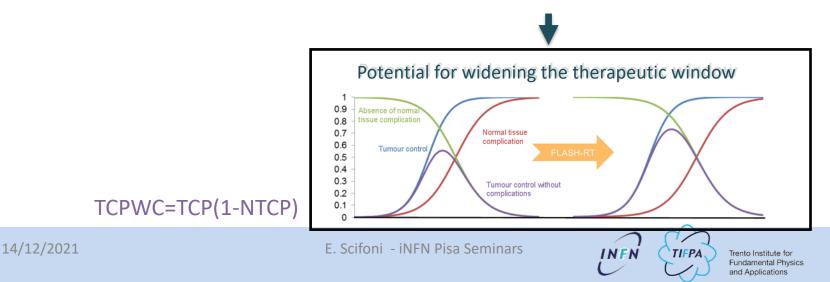
1-3 DECEMBER 2021


Main Scope of Radiotherapy

Balance between **desired** effects (tumour control) and **harmful** effects (normal tissue damage) induced by radiation dose

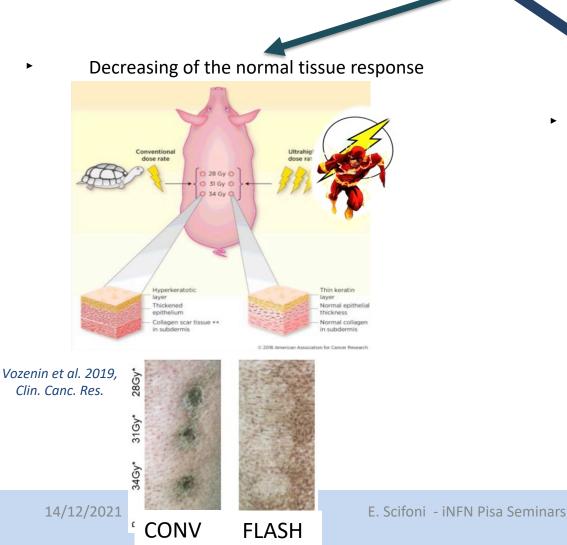
14/12/2021

and Applications

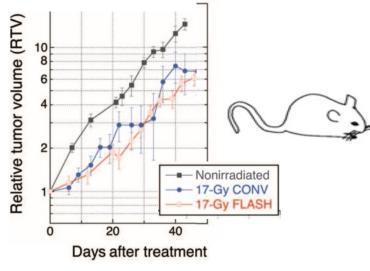


FLASH RT: what's that

FLASH Radiotherapy, is a novel approach of radiotherapy using ultra-high dose rate


(>40 Gy/s overall dose rate, for a total irradiation time <100 ms, but much higher rates (up to 10⁹ Gy/s) during each pulse)

aiming to get **unchanged tumor control** and **protection in the normal tissue.**



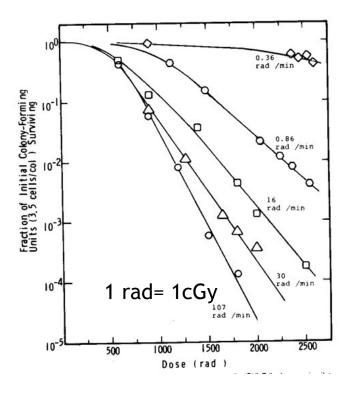
The FLASH Effect

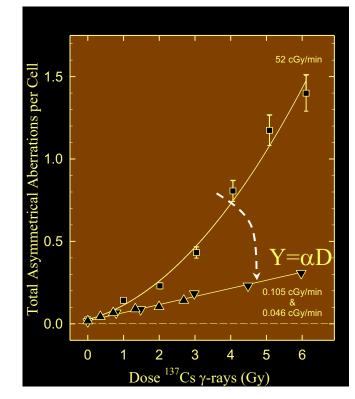
Irradiation with ultra-high dose rate

Preservation of the tumor responses

V. Favaudon et al. 2014, Sci. Transl. Med.

Radiobiology


Does it really work? And how?

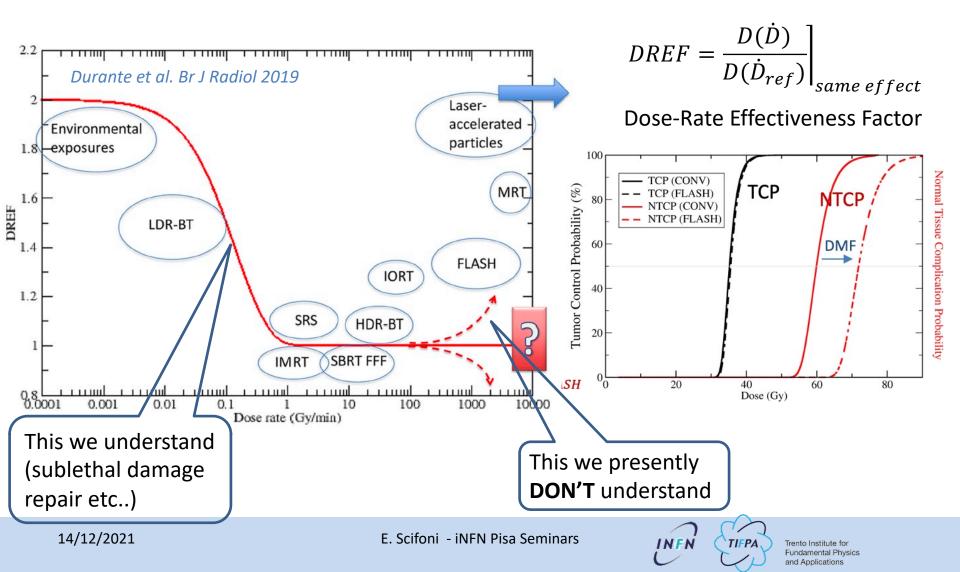

E. Scifoni - iNFN Pisa Seminars

Dose Rate effect in conventional Radiobiology

Clonogenic Survival

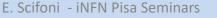
Chromosome Aberrations

It is observed a sparing effect at **decreasing** dose rate (at very low dose rate – "protracted" irradiation)


Mechanistic Explanation easy: **Potentially Letal Damage** allowed to be repaired

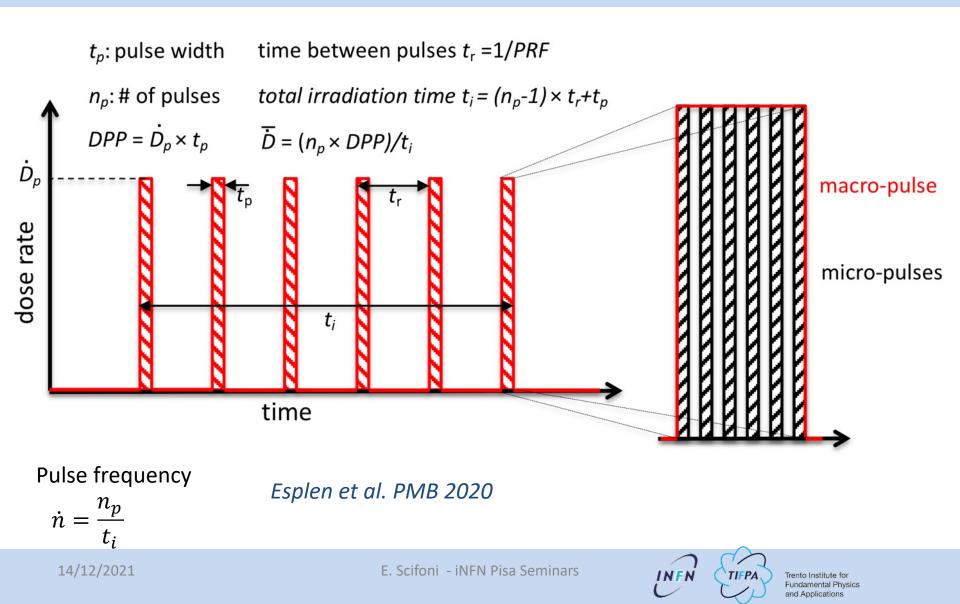
14/12/2021

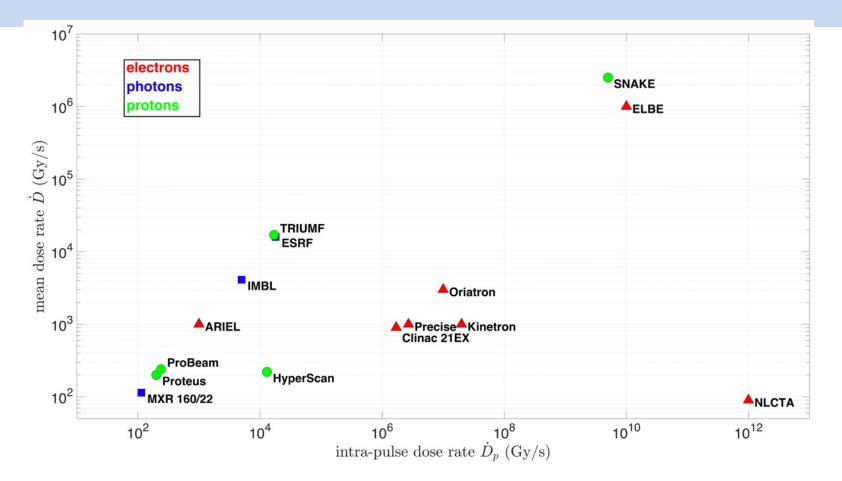
E. Scifoni - iNFN Pisa Seminars


INFN CTIFPA

Ultrahigh Dose Rate Response and FLASH

FLASH Basic questions:

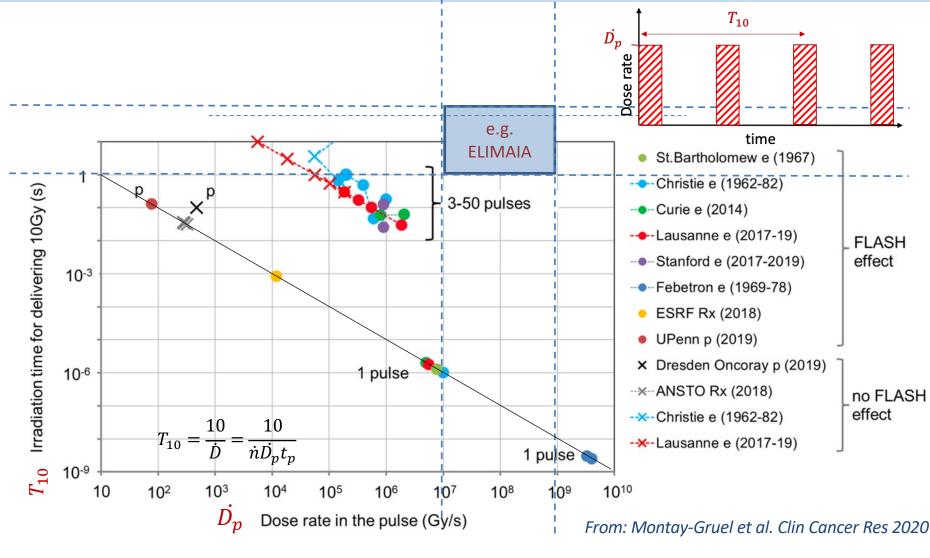

- WHY this happens?
- How is it possible to justify an "inverse" protective effect with increasing dose rate?
- How is it possible to justify having it selectively for NT while maintaining unchanged tumor control?
- WHEN (for which irradiation parameters) this happens?


TIFPA

Fundamental Physics

Dose Delivery time structure

Employed facilites

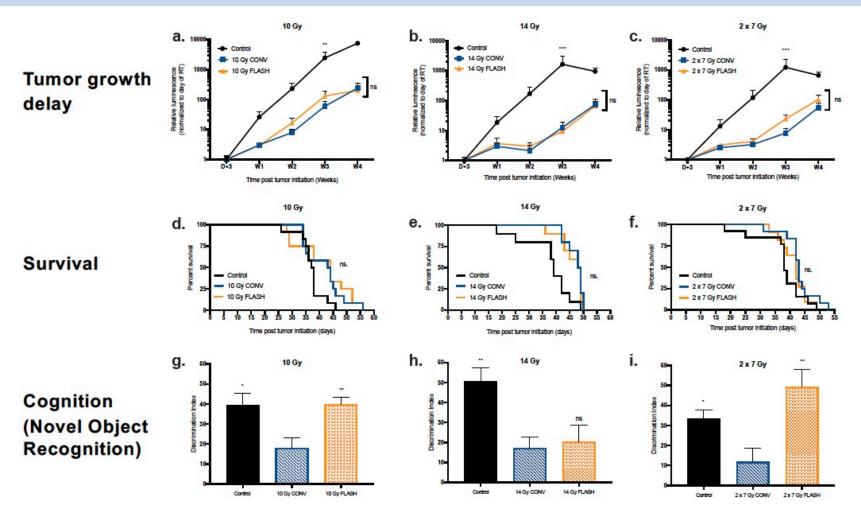

Esplen et al. PMB 2020

E. Scifoni - iNFN Pisa Seminars

ĮNFN I

TIFPA

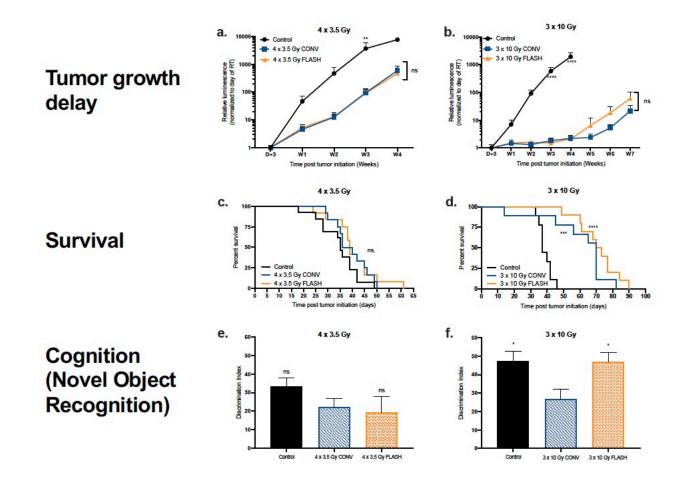
Parameters for observing FLASH/noFLASH



14/12/2021

E. Scifoni - iNFN Pisa Seminars

Fundamental Physics and Applications


Impact of Fractionation

Montay-Gruel et al. Clin Cancer Res 2020

E. Scifoni - iNFN Pisa Seminars

Impact of Fractionation

INFN

TIFPA

Dose modifying factor: NT

Let's be quantitative

In vivo studies			Irradiation delivery technique			Wil	lson	<i>`Front C</i>	2020	
Viodel	Assay	FLASH dose modification factor (Bold if > 1)	Total dose (Gy)	Dose rate (Gy/s)	Pulse rate (Hz)	Modality of radiation				
Zebrafish embryo (16)	Fish length	1.2-1.5	10-12	10 ⁶ -10 ⁷	Single pulse	Electron				
Zebrafish embryo (29)	Fish length, survival, and rate of oedema	1	0-43	100	0.106 × 10 ⁹	Proton				
Whole body irradiation of mice (34)	LD50	1.1	8-40	17-83	400	Electron				
Thoracic irradiation of mice (10)	TGFβ signaling induction	1.8	17	40-60	100-150	Electron				
Thoracic irradiation of mice (18)	Number of proliferating cells, DNA damage, expression of inflammatory genes	>1 Significant Differences	17	40-60	100–150	Electron	1,00	NTCP	1	-
Abdominal irradiation of mice (33)	Survival	<1 Significant Difference	16	35	Likely 300	Electron			//	
Abdominal irradiation of mice (12)	LD50	1.2	22	70-210	100-300	Electron	0,50	DMF		
Abdominal irradiation of mice (17)	Survival, stool formation, regeneration in crypts, apoptosis, and DNA damage in crypt cells	>1 Significant Differences	12–16	216	108	Electron			/	
Whole brain irradiation of mice (25)	Novel object recognition and object location tests	>1 Significant Differences	30	200, 300	108, 180	Electron	0,00	20 40	60 80	100 120
Whole brain irradiation of mice (13)	Variety of neurocognitive tests	>1 Significant Differences	10	5.6-10 ⁶	Single pulse	Electron		Do	se [Gy]	
Whole brain irradiation of mice (14)	Novel object recognition test	>1 Significant Differences	10	30-5.6-10 ⁶	100 or single pulse	Electron				
Whole brain irradiation of mice (8)	Novel object recognition test	≥1.4	10	5.6-7.8-10 ⁶	single pulse	Electron			TD^{Fl}	LASH
Whole brain irradiation of mice (24)	Novel object recognition test	>1 Significant Difference	10	37	1,300	X-ray	DN	$AF_{NT} =$	$\frac{ID_{50}}{TDC}$) ONV
Total body and partial body madiation of mice (32)	TD50	1	3.6-28	37-41	1,388	X-ray			ID_{5}°	0
Thoracic irradiation of mice (11)	lung fibrosis, skin dermatitis, and survival	>1 Significant Difference	15, <mark>1</mark> 7.5, 20	40	?	Proton				
rradiation of mouse tail skin (49)	Necrosis ND50	1.4	30 and 50	17–170	50	Electron				
rradiation of mouse skin (27)	Early skin reaction score	1.1–1.6	50-75	2.5 mean, 3 × 10 ⁴ in the pulse	23-80	Electron				
rradiation of rat skin (26)	Early skin reaction score	1.4-1.8	25-35	67	400	Electron				
rradiation of mini-pig skin (15)	Skin toxicity	≥1.4	22-34	300	100	Electron				

14/12/2021

E. Scifoni - iNFN Pisa Seminars

INEN CTIEPA

Dose modifying factor: Tumor

Let's be quantitative

Wilson 'Front Oncol 2020

100 120

	In vivo studies			Irradiation d	lelivery technique	Ð	
Nodel	Assay	FLASH dose modification factor (Bold if > 1)	Total dose (Gy)	Dose rate (Gy/s)	Pulse rate (Hz)	Modality of radiation	-
Thoracic irradiation of orthotopic angrafted non-small cell lung cancer Lewis lung carcinoma) in mice (36)	Tumor size and T-cell Infiltration	>1 Differences in tumor size (significant) and T-cell infiltration	18	40	?	Proton	
Thoracic irradiation of orthotopic angrafted mouse lung carcinoma IC-1 Luc+ in mice (10)	Survival and turnor Growth Delay	1	15-28	60	100-150	Electron	1,00
Abdominal irradiation of mice (17)	Number of tumors, tumor weights	1	12-16	216	108	Electron	DMF
Whole brain irradiation of nude mice with orthotopic engrafted H454 nurine glioblastoma (8)	Turnor Growth Delay	1	10-25	2.8–5.6-10 ⁶	Single pulse	Electron	0,50
ocal irradiation of subcutaneous angrafted Human breast cancer HBCx-12A and head and neck carcinoma HEp-2 in nude mice (10)	Tumor Growth Delay	1	15-25	60	<mark>100–150</mark>	Electron	0,00 0 20 40 60 80 100
ocal irradiation of subcutaneous ongrafted U87 human glioblastoma n nude mice (8)	Tumor Growth Delay	1	0-35	125-5.6-106	100 or single pulse	Electron	0 20 40 00 20 100 Dose [Gy]
ocal irradiation of subcutaneous engrafted U87 human glioblastoma n nude mice (19)	Turnor Growth Delay	1	10–30	125-5.6-10 ⁶	100 or single pulse	Electron	TD ^{CONV}
Local irradiation of subcutaneous angrafted Human hypopharyngeal squarnous cell carcinoma ATCC 4TB-43 in nude mice (35)	Tumor Growth Delay in irradiated Mice and RBE	(1)	20	0.008 mean, ≈10 ⁹ in pulse	<<1	Proton	$DMF_T = \frac{TD_{50}^{CONV}}{TD_{50}^{FLASH}}$
Treatment of locally advanced squamous cell carcinoma (SCC) in at patients (15)	Tumor response and survival	1 Similar response as in published studies with CONV-RT	25-41	130-390	100	Electron	
Treatment of CD30+ T-cell cutaneous lymphoma F3 NO M0 B0 in human patient (9)	Tumor response	1 Similar response as previous treatments with CONV-RT	15	167	100	Electron	

14/12/2021

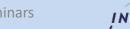
E. Scifoni - iNFN Pisa Seminars

TIFPA INFN

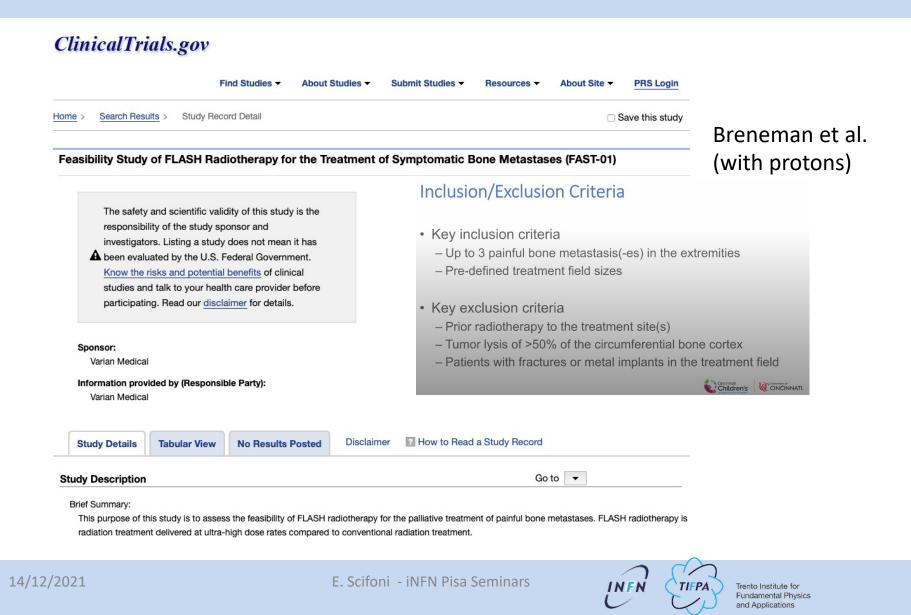
The first clinical result

Original Article

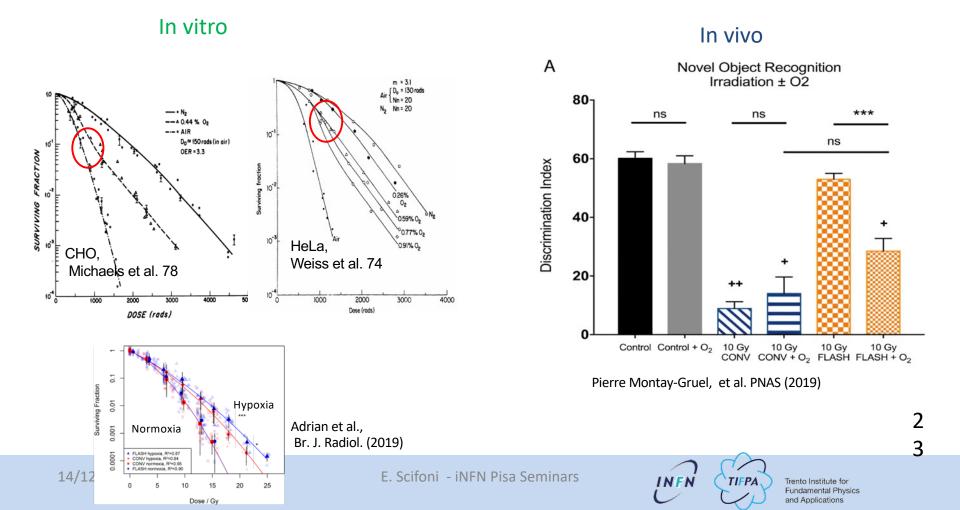
Treatment of a first patient with FLASH-radiotherapy


Jean Bourhis^{a,b,*}, Wendy Jeanneret Sozzi^a, Patrik Gonçalves Jorge^{a,b,c}, Olivier Gaide^d, Claude Bailat^c, Fréderic Duclos^a, David Patin^a, Mahmut Ozsahin^a, François Bochud^c, Jean-François Germond^c, Raphaël Moeckli^{c,1}, Marie-Catherine Vozenin^{a,b,1}

^a Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne; ^bRadiation Oncology Laboratory, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne; ^cInstitute of Radiation Physics, Lausanne University Hospital and University of Lausanne; and ^dDepartment of Dermatology, Lausanne University Hospital and University of Lausanne, Switzerland


- multiresistant CD30+ T-cell cutaneous lymphoma disseminated throughout the whole skin surface.
- Localized skin RT previously used over 110 times for various ulcerative and/or painful cutaneous lesions progressing despite systemic treatments.
- Treatment given to a 3.5-cm diameter skin tumor with a 5.6-MeV linac specifically designed for FLASH-RT.
- Prescribed dose to the PTV = 15 Gy, in 90 ms.
- Results: At 3 weeks, i.e. at the peak of the reactions, a grade 1 epithelitis (CTCAE v 5.0) along with a transient grade 1 oedema (CTCAE v5.0) in soft tissues surrounding the tumor were observed.
- Clinical examination was consistent with the optical coherence tomography showing no decrease of the thickness of the epidermis and no disruption at the basal membrane with limited increase of the vascularization.
- In parallel, the tumor response was rapid, complete, and durable with a short follow-up of 5 months

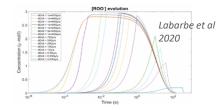
TIFPA



The first Clinical trial

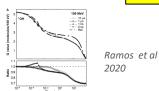
FLASH - depends on oxygen concentration

Known from the early FLASH experiments in the 60ies confirmed in cell cultures, tail clamp exp., hyperbaric breathing ...

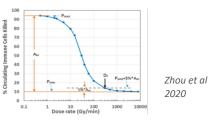

Main FLASH mechanistic hypothesis

Transient Hypoxia (O₂ Depletion)

- G. Pratx, D. S. Kapp, A computational model of radiolytic oxygen depletion during FLASH irradiation and its effect on the oxygen enhancement ratio, PMB (2019)
- K. Petersson, et al. A quantitative analysis of the role of oxygen tension in FLASH radiotherapy, IJROBP (2020)
- G. Adrian, et al., The FLASH effect depends on oxygen concentration, Brit. J. Radiol. (2020)
- R. Abolfath, et al, "Oxygen depletion in FLASH ultra-high-dose-rate radiotherapy: A molecular dynamics simulation." *Med. Phys.* (2020).
- S. Zhou, et al. "Minimum dose rate estimation for pulsed FLASH radiotherapy: A dimensional analysis." *Med. Phys.* (2020).
- A. Hu, et al. "Oxygen depletion hypothesis remains controversial: a mathematical model of oxygen depletion during FLASH radiation."" subm.arXiv (2021)
- Zakaria, A. et al.. (2021). Transient hypoxia in water irradiated by swift carbon ions at ultrahigh dose rates: implication for FLASH carbon-ion therapy. Canadian Journal of Chemistry,
- Zhu, H, et al. "Modeling of cellular response after FLASH irradiation: a quantitative analysis based on the radiolytic oxygen depletion hypothesis." arXiv subm.(2021).


Organic radical-radical recombination

- R. Labarbe, et al. "A physicochemical model of reaction kinetics supports peroxyl radical recombination as the main determinant of the FLASH effect." Radiother. Oncol. (2020
- D. R. Spitz, et. al., An integrated physico-chemical approach for explaining the differential impact of FLASH versus conventional dose rate irradiation on cancer and normal tissue responses, Radiother. Oncol. (2019)
- C. Koch, Re: Differential impact of FLASH versus conventional dose rate irradiation, Radiother. Oncol. (2020
- D. R. Spitz, et al, Response to Ling et al. regarding, Radiother. Oncol. (2020).
- D. Boscolo et al.. (2020). Impact of target oxygenation on the chemical track evolution of ion and electron radiation. International Journal of Molecular Sciences, 21(2), 424.
- D. Boscolo, et al. May oxygen depletion explain the FLASH effect? A chemical track structure analysis. Radiother Oncol, 162:68-75.
- Y. Lai et al "Modeling the effect of oxygen on the chemical stage of water radiolysis using GPU-based microscopic Monte Carlo simulations, with an application in FLASH radiotherapy" Phys Med Biol 2020


2019-2021 (!)

Intertrack Effects

- A.M. Zakaria, et al. "Ultra-High Dose-Rate, Pulsed (FLASH) Radiotherapy with Carbon lons: Generation of Early, Transient, Highly Oxygenated Conditions in the Tumor Environment." *Rad. Res.* (2020).
- J. Ramos-Méndez, et al. "LET-Dependent Intertrack Yields in Proton Irradiation at Ultra-High Dose Rates Relevant for FLASH Therapy." *Rad. Res.* (2020).
- Alanazi, A., et al.. (2021). A computer modeling study of water radiolysis at high dose rates. Relevance to FLASH radiotherapy. Radiation research, 195(2), 149-162.

Immune system driven

- the differential responses to ionizing radiation between normal and tumor tissues. Radiation Medicine and Protection, 1(1), 35-40.
- Jin J. Y., et al. FLASH Dose Rate Effect on Circulating Immune Cells: A Potential Mechanism for FLASH-RT?. International Journal of Radiation Oncology, Biology, Physics, 2020, 108.3: S7.
- Jin, Jian-Yue, et al. "Ultra-high dose rate effect on circulating immune cells: A potential mechanism for FLASH effect?." Radiotherapy and Oncology 149 (2020): 55-62

Spatiotemporal Scales of Radiation Damage

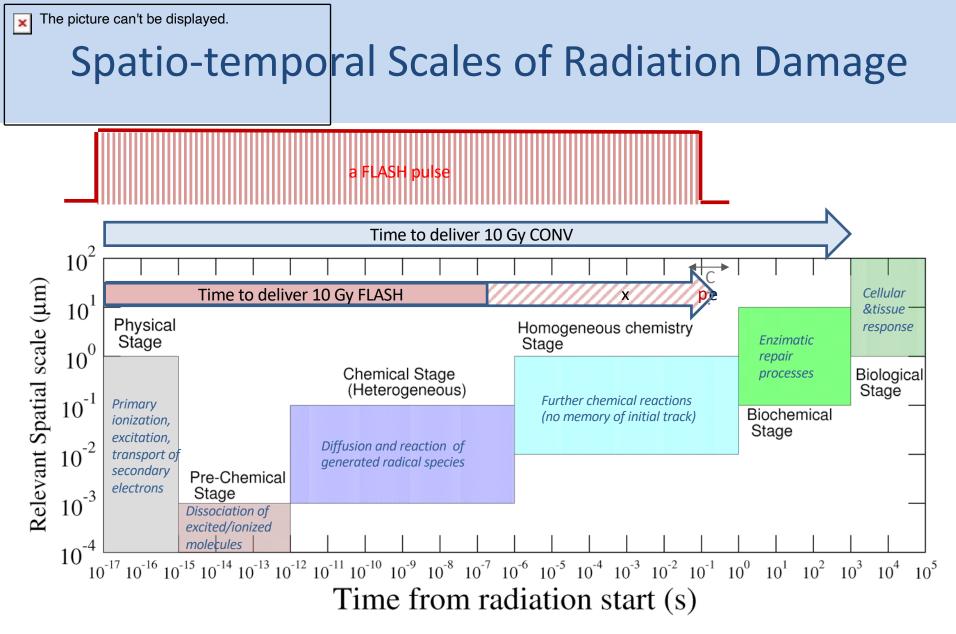
•IV. ~10⁻¹⁵s

•III. ~ 10⁻¹⁵ - 10⁻⁶

•II.~10⁻¹⁷s

Local heating

even for ions, 2/3 of resulting biodamage carried by electrons: LOW LET/HIGH LET regimes Multiscale phenomena


Surdutovich ,Scifoni, Solov'yov et al. PRE (2009), Eur.Phys News (2009), Mut.Res.Rev. (2010)

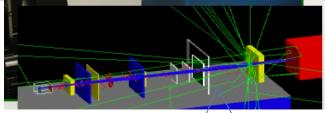
Different STAGES:

- I. Propagation of ions
- II. Primary ionization in the medium
- III. Propagation of secondary
- electrons and radicals
- IV. Electron degradation of DNA
- V. Radiobiological scale effects

I. ~10⁻²²s

Prague Oct 20, 201

TIFPA


Trento Institute for Fundamental Physics and Applications

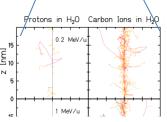
INFN

Weber, Scifoni, Durante 2021

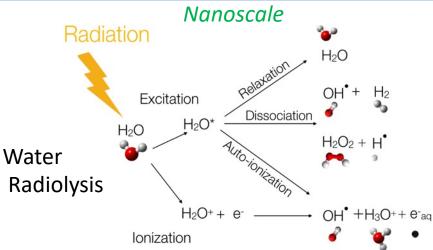
Monte Carlo Methods for Radiation Research

 MC radiation transport codes =Condensed history codes.

- (GEANT4(*), FLUKA, PHITS, SHIELD-HIT, EGS4, MCNPX, ...)
- + possibility to describe entire irradiation geometry
- Imposition of thresholds (i.e. G4: e->~900eV)
- MC Track Structure codes


=Event by Event. Stochastic (physics+chemistry)

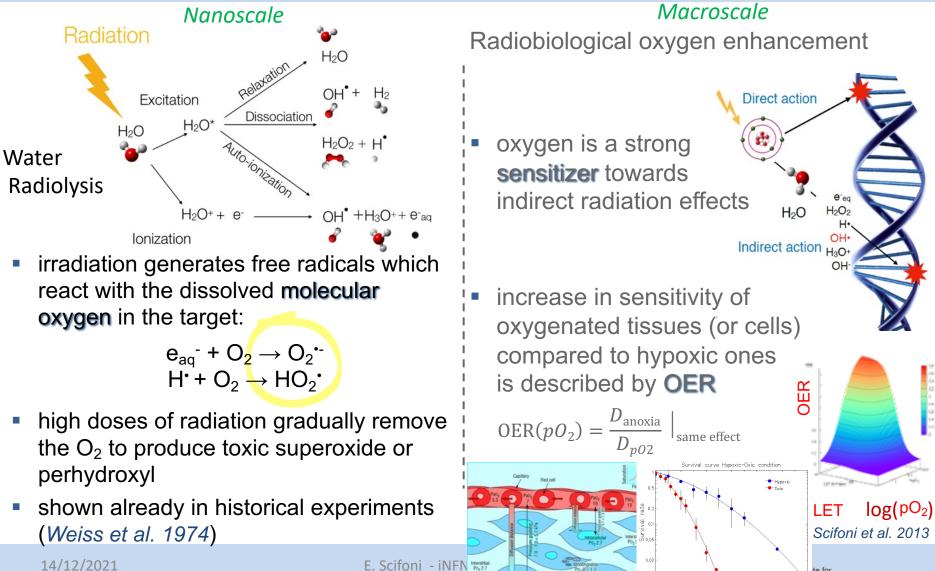
(PARTRAC, TRAX, GEANT4DNA, TOPASnBIO, RITRACKS...)


+ no, or negligible (~1eV) energy/space threshold

- Limited portion of track describable (normally "track segment")

(*) with its wrappers TOPAS, GATE, MCHIT

(2-fold) Oxygen and radiation interplay

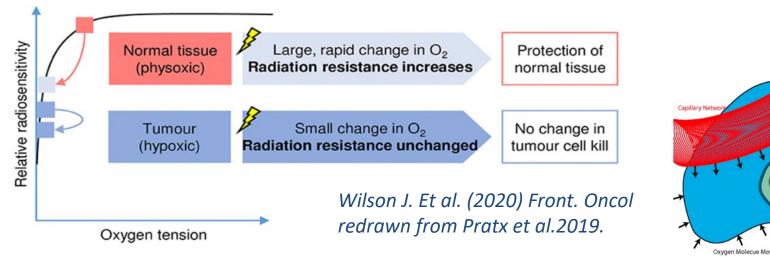


 irradiation generates free radicals which react with the dissolved molecular oxygen in the target:

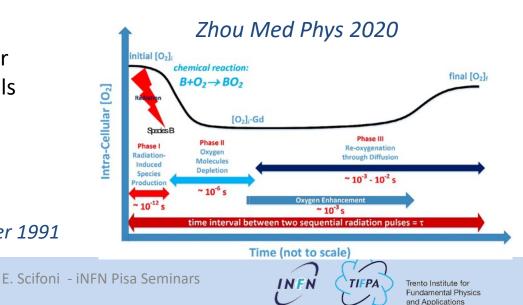
 $e_{aq}^{-} + O_2 \rightarrow O_2^{-}$ $H^{\bullet} + O_2 \rightarrow HO_2^{\bullet}$

- high doses of radiation gradually remove the O₂ to produce toxic superoxide or perhydroxyl
- shown already in historical experiments (Weiss et al. 1974)

(2-fold) Oxygen and radiation interplay

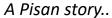


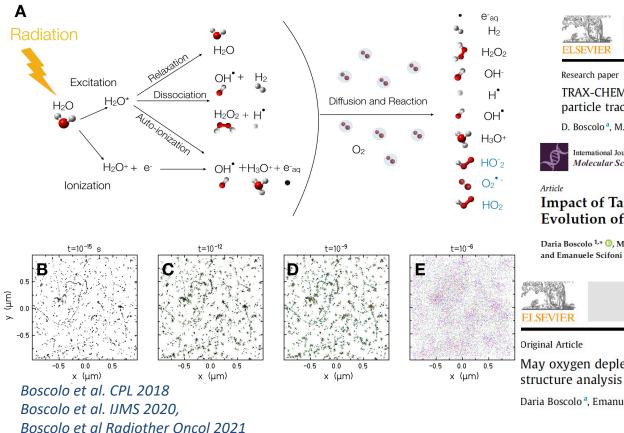
I Physics


15 Dose [Gy]

14/12/2021

The Oxygen Depletion Hypothesis (ROD)

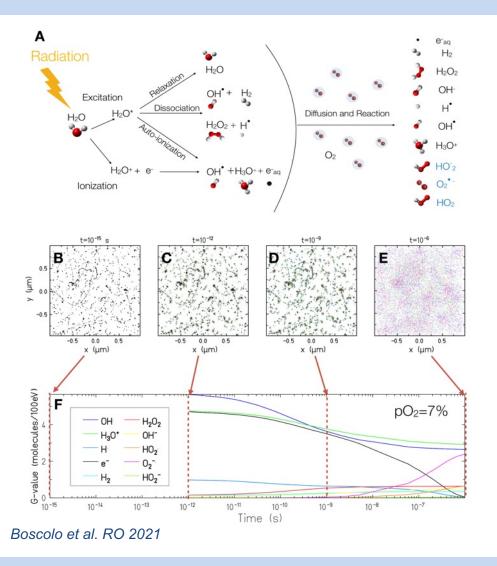



- Ultrahigh dose rate: Oxygen consuption too quick for redifussion to restore initial levels
- Transient hypoxia generated -> induced radioresistance
- Already suggested in *Hall&Brenner 1991*

Methods: the TRAX-CHEM code

	Chemical Physics Letters
ELSEVIER	journal homepage: www.elsevier.com/locate/cplett
Research paper	
	: A pre-chemical and chemical stage extension of the k structure code TRAX in water targets
D. Boscolo ^a , M	Krämer ^{a,*} , M. Durante ^b , M.C. Fuss ^a , E. Scifoni ^{a,b}
International Jo Molecular So	MDDI
	rget Oxygenation on the Chemical Track Ion and Electron Radiation
a Boscolo ^{1,} * ⁽), N Emanuele Scifoni	chael Krämer ¹ , Martina C. Fuss ¹ ⁽³⁾ and Marco Durante ^{1,2,3} ⁽³⁾
8	Radiotherapy and Oncology
ER	journal homepage: www.thegreenjournal.com
Article kygen deple	tion explain the FLASH effect? A chemical track

Daria Boscolo^a, Emanuele Scifoni^b, Marco Durante^{a,c,*}, Michael Krämer^a, Martina C. Fuss⁻



Trento Institute for Fundamental Physics and Applications

14/12/2021

E. Scifoni - iNFN Pisa Seminars

A radiation chemical approach

TRAX-CHEM code + analytical model

Monte Carlo Track structure code for physical and chemical interactions

- Ion / electron scattering processes
- **Radical production**
- Step-by-step diffusion and reactions in water
- **Dissolved** oxygen

 $D_{OER,DYN} =$

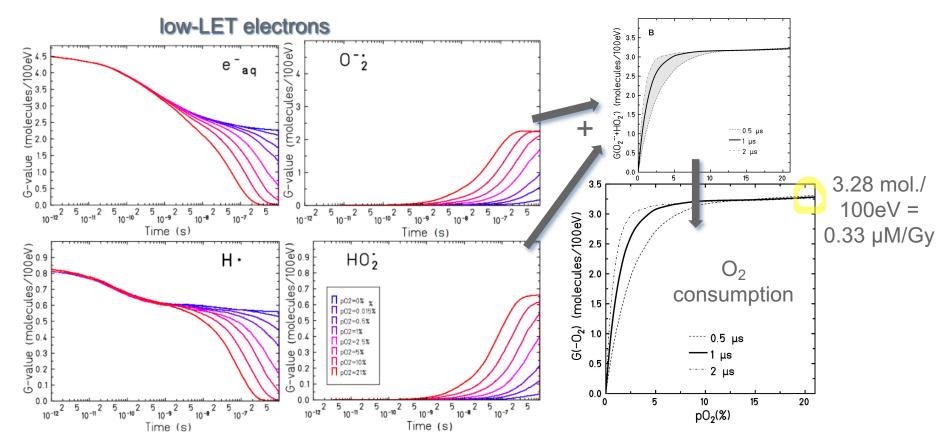
INFN

diffusion as random jump acc. Einstein-Smoluchowski, $\lambda = \sqrt{6D\Delta t}$ reactions via reaction radius $a_{AB} = \frac{k_{AB}}{4\pi (D_A + D_B)}$

Output: Time-dependent radical yields (G-values) and species localization, O₂ consumption yield

- Assumption of short irradiation pulse without rediffusion of O_2 (~ms), represents upper limit
- Instantaneous [O₂] and OER used to compute

TIFPA


14/12/2021

E. Scifoni - iNFN Pisa Seminars

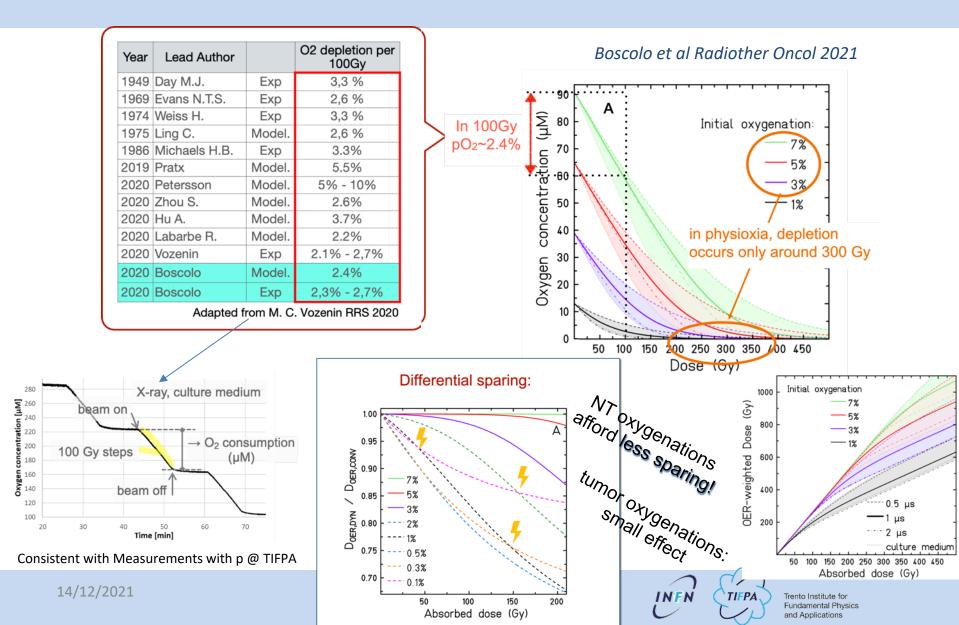
Fundamental Physics and Applications

 $OER([O_2](D)) dD$

TRAX-CHEM predicted oxygen depletion

Boscolo et al. IJMS 2020

Boscolo et al. Radiother Oncol 2021


Trento Institute for Fundamental Physics and Applications

TIFPA

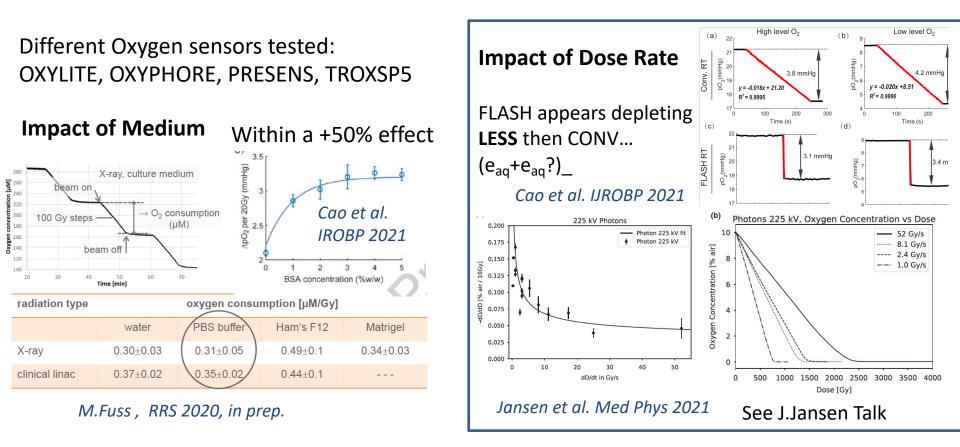
INFN

Is ROD realistic?

Analyis on the exp data

Boscolo et al Radiother Oncol 2021

OER impact for the published in vivo results


			FLASH		
Experiment	Dose (Gy) ^a	<i>p</i> O _{2,ini} (%) ^b	$p\mathrm{O}_{2,\mathrm{fin}}(\%)$	Doer,dyn (% of conv.)	
Mouse whole brain (14)	10	3.4	3.13	100	
Minipig skin (13)	31	5.3	4.39	100	
Cat, healthy skin/ mucosa (13)	33	5.9	4.91	100	
Cat squameous cell carcinoma (13)	33	1.9	1.27	98.5	
Mouse lung (12)	17	5.6	5.09	100	
Lung tumor (12)	17	2.1	1.74	99.3	
Human patient, healthy skin (15)	15	5.3	4.86	100	
Human skin lymphoma (15)	15	1.5	1.24	99.1	

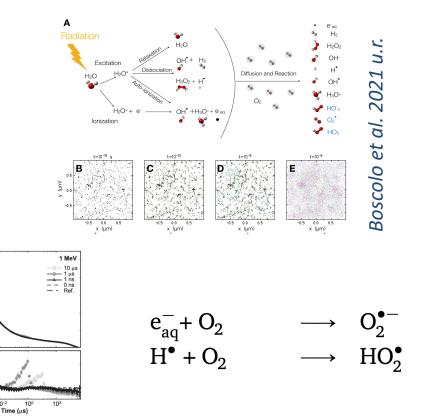
E. Scifoni - iNFN Pisa Seminars

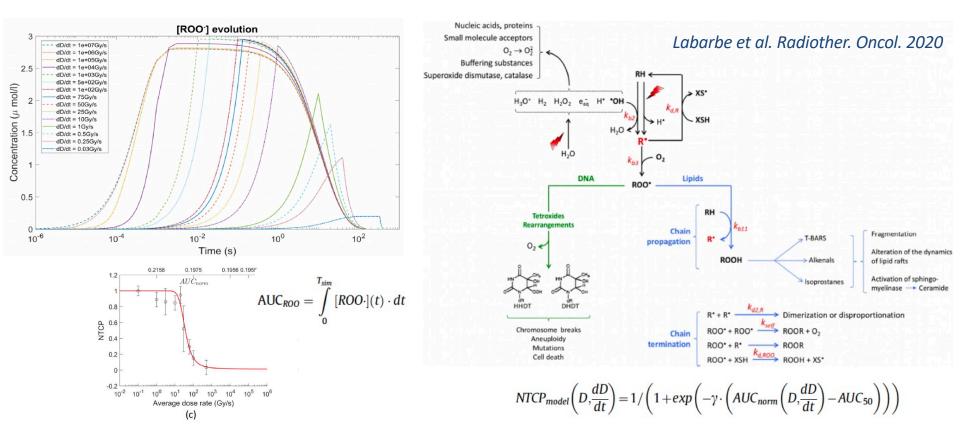
O depletion Measurements

TIFPA

INFN

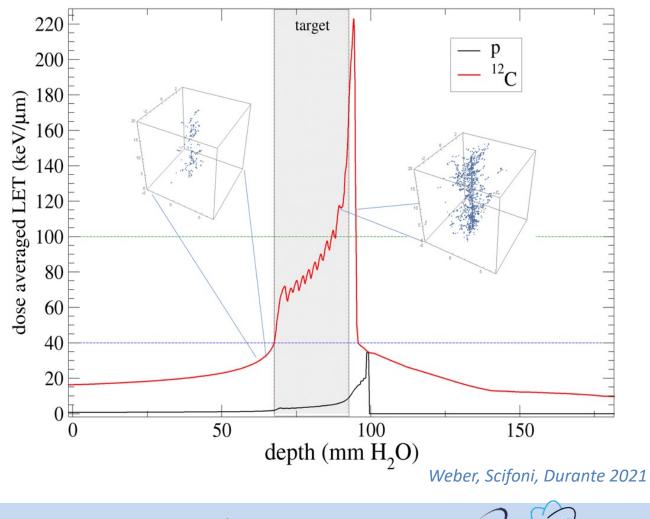
Some facts/hypothesis


- Lower production of H2O2/contribution of O2
 - (Montay-Gruel et al, PNAS, 2019; Adrian et al, BJR, 2019)
- Lower level of persistent DNA damage and senescent cells
 - (Fouillade et al, CCR, 2019)
- Metabolism including redox
 - (Spitz et al, RO, 2019)
- Inflammation/Immune system (increasing popularity)
 - (Favaudon et al, STM 2014; Montay-Gruel et al, PNAS, 2019)
- Signaling pathways/Stem cells protection
 - (Montay-Gruel et al, RO, 2017)

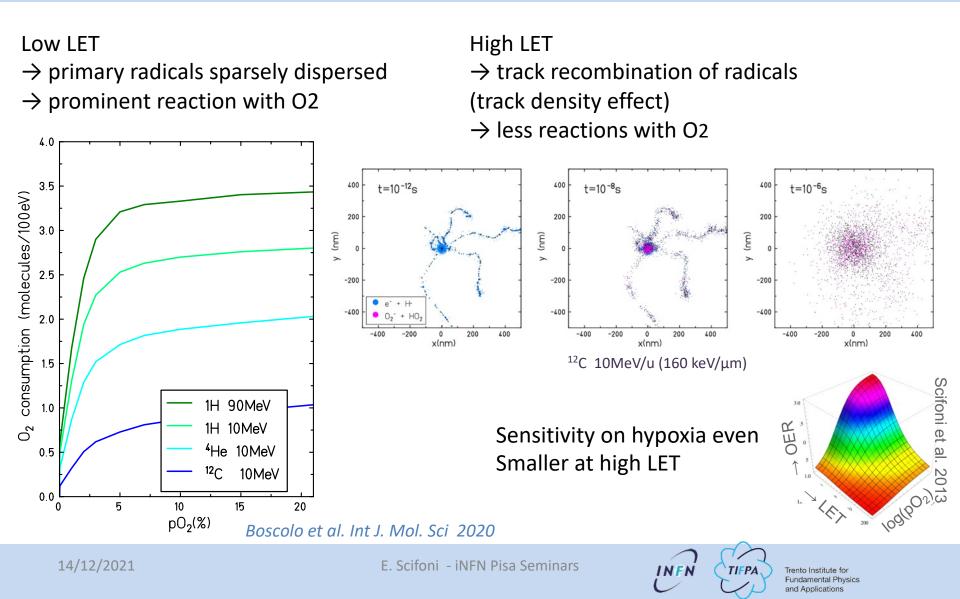

Tools -Codes for exploring FLASH Chemistry

Heterogeneous stage (and slightly beyond...)

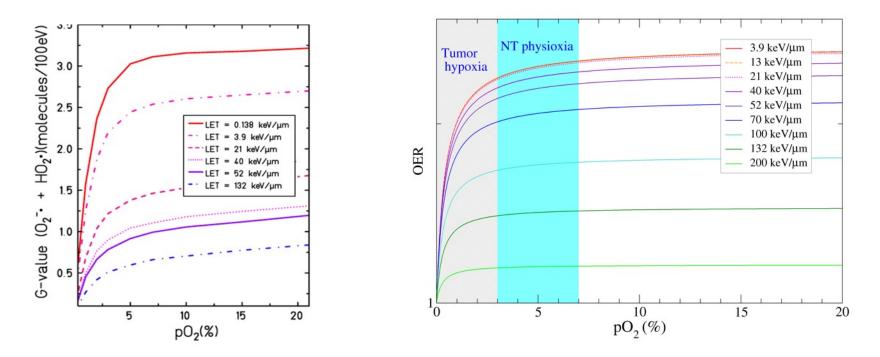
- TRAX-CHEM (Boscolo et al. 2020)
- TOPASnBIO (Ramos et al. 2020)
- gMicroMC (Lai et al. 2021)
- Geant4-DNA (Tran et al. 2021)
- IONLYS-IRT (Alanazi et al. 2021
- NASIC (Zhou et al.2021) *Ramos et al. RR 2020*


Radical recombination hypothesis

14/12/2021


E. Scifoni - iNFN Pisa Seminars

Impact of LET?



INFN CTIFPA

O depletion at different LET

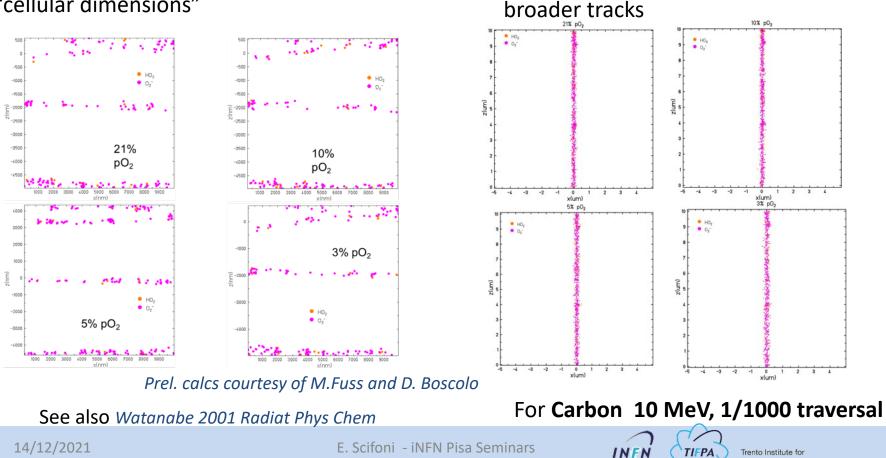
LET impact on Radical yeld and depletion

Boscolo et al. 2020

Weber, Scifoni, Durante 2021

INFN CTIFPA

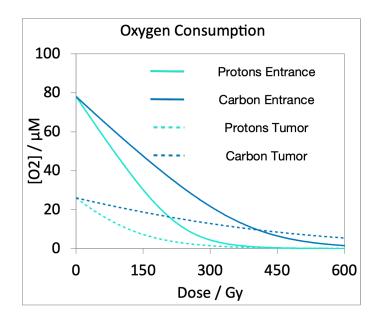
Track structure effects at different LET

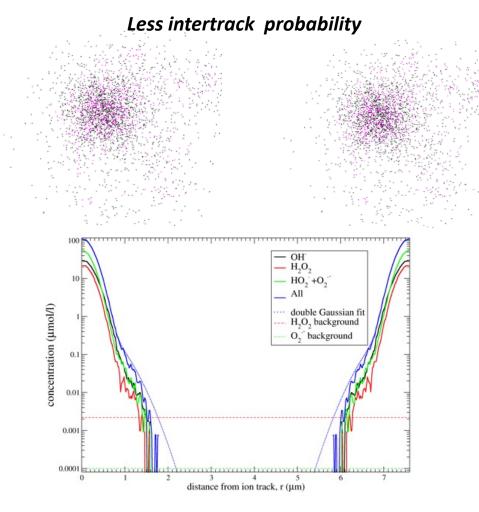

For **protons 10 MeV**, (4.5 keV/ μ m) even

Fundamental Physics and Applications

more difficult intertrack, considering 1

traversal/25 cells. Denser but not

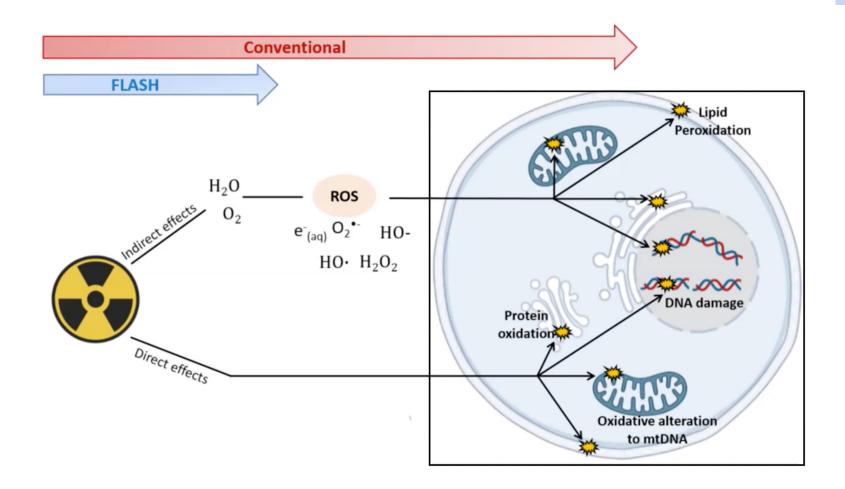

No Intertrack effect possible in the timescale of the given dose ranges, i.e. for **1MeV electrons** (300Gy/s in 1µs) in "cellular dimensions"



Track structure effects at different LET

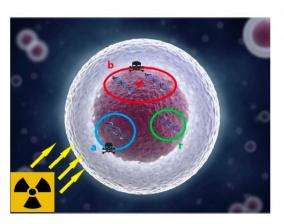
For several mechanisms is expectable a strongly reduced FLASH effect

Less Oxygen depletion

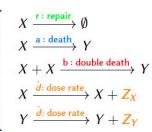


Scifoni et al. PTCOG 2021

Further Mechanistic routes



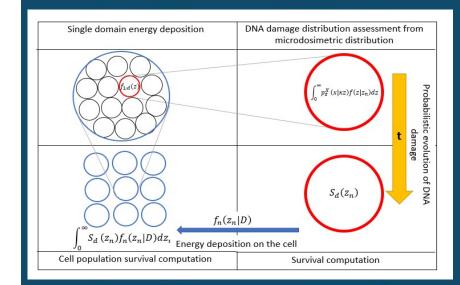
14/12/2021


E. Scifoni - iNFN Pisa Seminars

TD-DNA damage modeling in FLASH conditions

 Time dependent implementation of GSM² a Microdosimetry based model to generalize the DNA damage repair kinetics (DDRK)) including the dependence on the dose-rate time structure, and chemical yields (Cordoni et al FRPT 2021)

X and Y are random variables X : number sub-lethal lesions Y : number lethal lesions

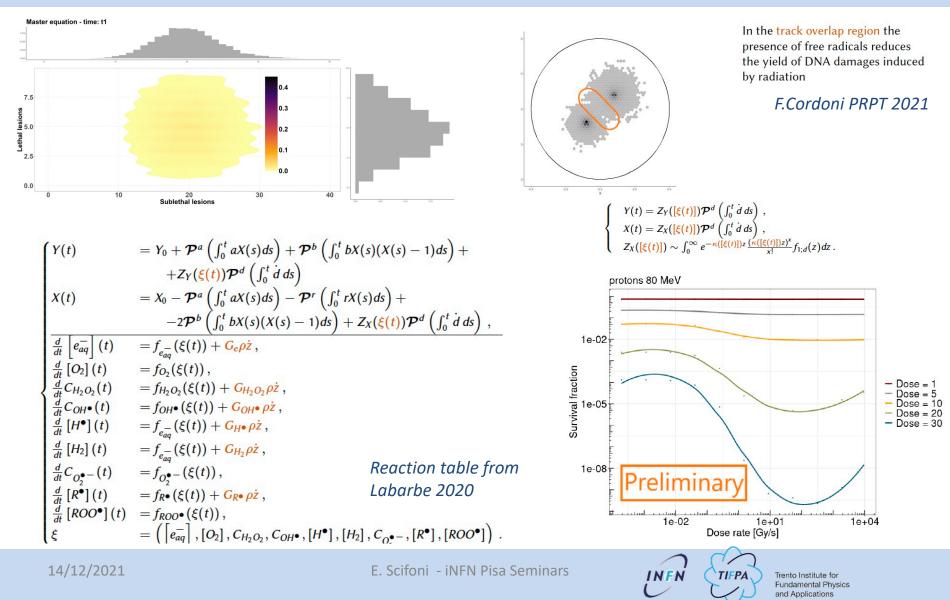

 Z_X and Z_Y are random variables that depend on microdosimetric distribution

RADIATION RESEARCH 197, 000–000 (2022) 0033-7587/22 \$15.00 ©2022 by Radiation Research Society. All rights of reproduction in any form reserved, DOI: 10.1667/RADE-21-00098.1

Cell Survival Computation via the Generalized Stochastic Microdosimetric Model (GSM2); Part I: The Theoretical Framework

Francesco G. Cordoni, ab Marta Missiaggia, b.c.1 Emanuele Scifonib and Chiara La Tessabe2

Radiation Research



14/12/2021

E. Scifoni - iNFN Pisa Seminars

IFN TIFPA

TD-DNA damage modeling in FLASH conditions

Summary 1- Radiobiology

- FLASH radiotherapy proposes the use of ultrafast dose rate (>40 Gy/s) to achieve differential sparing of NT as well as maintaining effectiveness on the Tumor
- Increasing preclinical evidence of both **NT sparing** and unchanged **tumor control** has been collected
- The parameters for getting the effect include **intrapulse dose rate**, **overall dose rate**, **absolute dose**, with a minimum and maximum value for the latter
- Radiobiological mechanism is far to be understood: It is clear that oxygenation should play a role, but chemical-physical stage arguments alone are unable to now to explain the effect
- Implementation of FLASH conditions on literature examples doesn't support the hypothesis of a
 possible differential effect of Local Oxygen Depletion between target and normal tissue, at the doses
 used, rather pointing eventually to a possible inverse effect. The accounting of more complex
 mechanisms like Fenton pathway and ROO., redox Chemistry appears essential
- High LET radiation should imply even larger doses, thus is expected to be less efficient.
- OK, we don't understand why it works but it really seems to work: Thus, anyway, can this go to the clinic?

TIFPA

d Applications

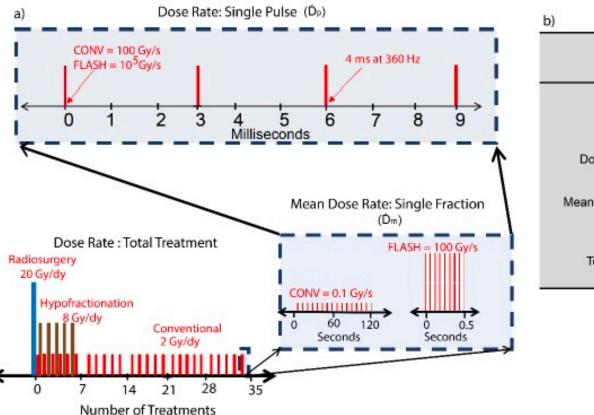
Dosimetry

If it work, can we control it?

(...and btw, can we trust experiments?)

14/12/2021

E. Scifoni - iNFN Pisa Seminars


The dosimetric challenge

- Using ultra fast dose rate, implies a 2 fold need to control and measure the dose at unconventional levels:
 - In order to assure the correctness of experiment results (accuracy <5%)

In order to potentially translate to the clinic <1%

TIFPA

Multilevel Dose time structure

Beam Characteristics	CONV	FLASH	
Dose Per Pulse Dp	~0.4 mGy	~1 Gy	
Dose Rate: Single Pulse Ď _P	~100 Gy/s	~10 ⁵ Gy/s	
Mean Dose Rate: Single Fraction Ď _m	~0.1 Gy/s	~ 100 Gy/s	
Total Treatment Time T	~days/minutes	< 500 ms	

Fig. 3) a) Dose rate schemes in radiation therapy indicating different interpretations of dose-rate. b) Typical temporal beam characteristics for conventional (CONV) and FLASH-RT using electrons.

Ashraf Front Oncol 2020

14/12/2021

INFN 🤇

TIFPA.

Charge based dosimeters

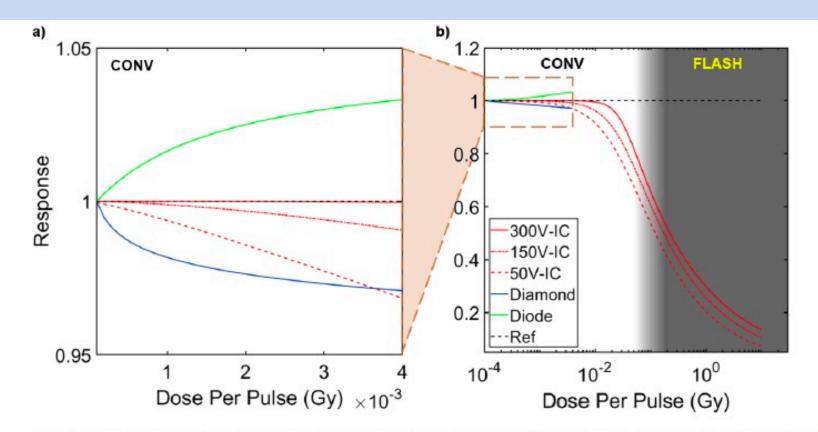
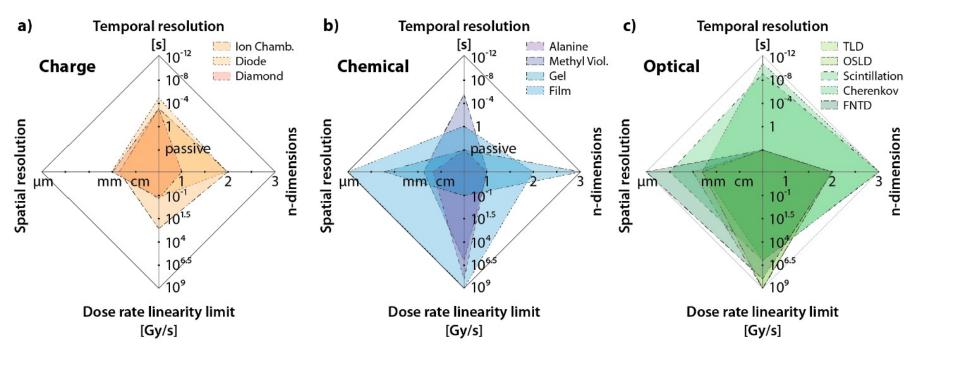


Fig 5) Model for charged based detector response based on Advanced Markus Chamber IC, PTW microDiamond, and Isorad Gold (n-type) diode detectors. Dose per pulse dependency of detector response are shown for a) conventional beams and b) FLASH beams. Advanced Markus Chamber IC response (charge collection efficiency) was calculated for three different bias voltages and the only charge-based detector to be tested in FLASH dose rates⁴¹. Model for diamond detector response (charge collection efficiency) and diode detector response (sensitivity) were only tested at conventional dose rates^{42,43}.

INFN


TIFPA

Trento Institute for Fundamental Physics and Applications

,

E. Scifoni - iNFN Pisa Seminars

Different types of dosimeters

Ashraf Front Oncol 2020

E. Scifoni - iNFN Pisa Seminars

INFN (

TIFPA

Dose Delivery (and Planning?)

If It work and we can control it can we give it to patients?

Many slldes courtesy from Marco Schwarz

14/12/2021

E. Scifoni - iNFN Pisa Seminars

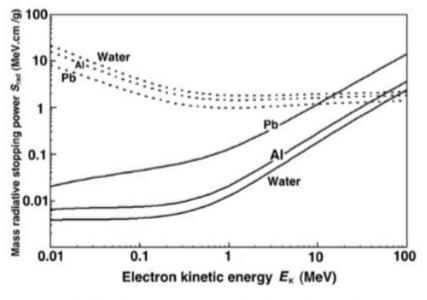
ואדא 🔇

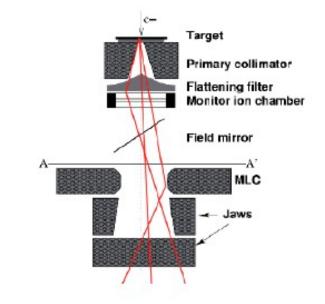
TIFPA

FLASH dose delivery?

• Main task of radiotherapy

– > dose delivery and dose shaping,
 Exploiting the available degrees of freedom


- Are 40 Gy/s achievable with current machines?
- If yes, are there still any degrees of freedom available for treatment planning?
- Different solutions for different Radiation types

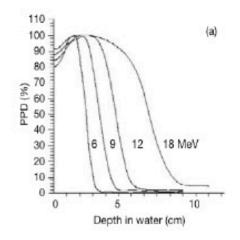

X-rays

Max dose rate with current FFF linacs:

Roughly 20Gy/min (roughly two orders of magnitude lower)

Mass radiative stopping power = solid line Mass collision stopping power = dotted line

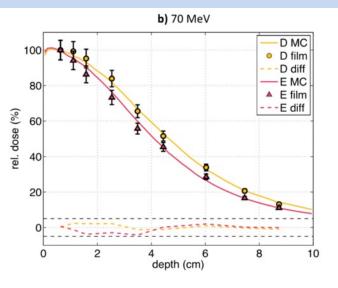
Flash with photons:


Not even attempted with current equipment (which is used to treat the vast majority of RT patients)

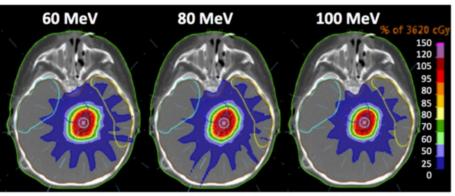
Electrons (6-20 MeV)

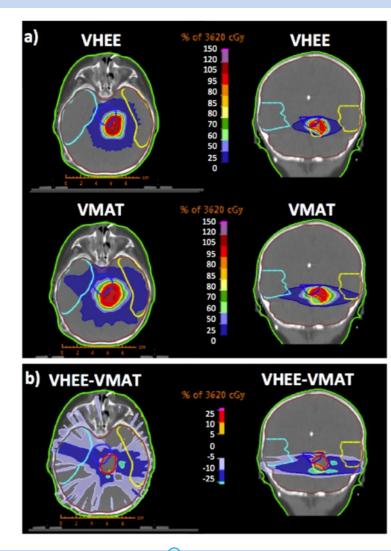
Good news 1b:3 weeks la : Day 0 Bourhis R&O 2020 lc:5 months 5.6 MeV electrons 15Gy in 90ms (!)

Less good news


Low energy electrons can be used only for superficial lesions & distal OAR

Treatment planning was as simple as it gets due to flash requirements


(Very) High Energy Electrons ?



VHEE

Multiple high energy electron beams can generate dose distributions seemingly competitive with VMAT

a) beam energy

E. Scifoni - iNFN Pisa Seminars

TIFPA

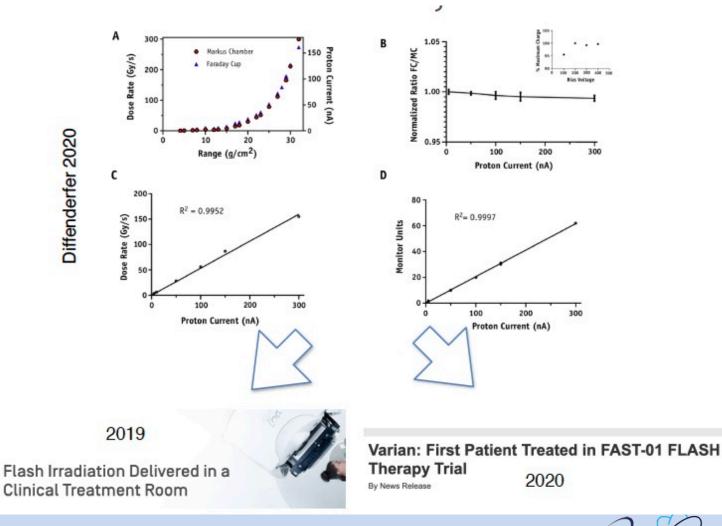
Protons and heavier ions?

Let's start simple:

$$\dot{D} = \frac{i_p}{A} \frac{S}{\rho} \quad \frac{Gy}{s}$$

i_p= beam current in nA A= transversal area in cm² S/ρ= Mass Stopping Power in MeV*cm²/g

With values representative for current practice, e.g. ip=2nA, A=25 cm² and S/p=5 MeV*cm²/g


Doserate=0.4 Gy/s

So the question becomes: Can we boost ip to 200 nA with current equipment?

Courtesy of Marco Schwarz

First order answer: Yes we can!

14/12/2021

E. Scifoni - iNFN Pisa Seminars

INFN (

TIFPA

BUT....

E. Scifoni - iNFN Pisa Seminars

INFN TIFPA

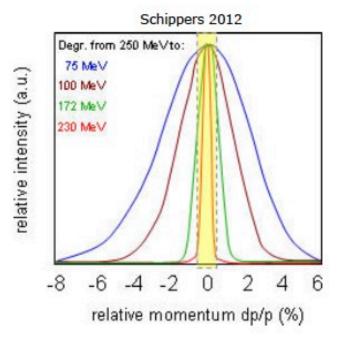
Not all Proton systems are "flashable"..

Accelerator Type	Isochronous Cyclotron		Synchrocyclotron	
Vendor	IBA	Varian	IBA	Mevion
System	C230	PROBEAM	\$2C2	S250
Maximum Energy (MeV)	230	250	250	250
Minimum Energy (MeV)	70	70	70	70
Peak Current(µA)	0.3	0.8	~ 18	~ 7
Max Ave. Current (nA)	300	800	~ 130	~ 32
Accel. Frequency (MHz)	106.1	72.8	87.6-63.2	133-90
Repetition rate	CW	CW	1 kHz	500-750 Hz
Treatment Pulse Length	>400 µs	>400 µs	7 μs	6 µ s
Bunch Length	~ 2 ns	~ 2 ns	~ 2 ns	~ 2 ns
lax Part. per Bunch/Pulse	100,000	70,000	8×10^{8}	4×10^{8}
Electric/Central Field	1.7 T	2.4 T	5.75 T	9 T
References	[18,19]	[20,21]	[22]	[23-25]
Jolly 2020 Many/most current PT systems		Relatively new PT systems		

INFN 🔇

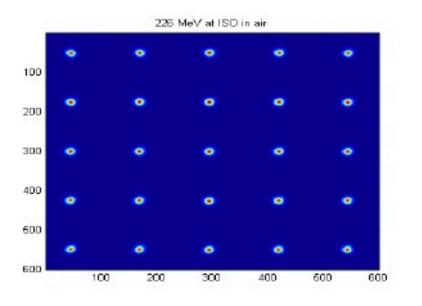
TIFPA

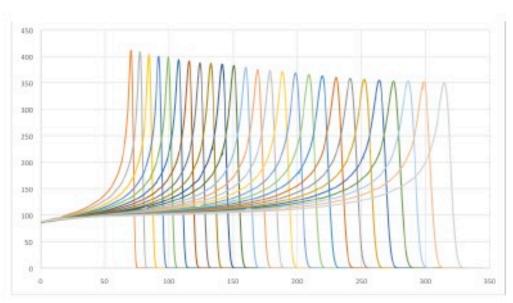
not all **energies** can be delivered at flash rate


Due to the degrader+energy selection system, there is a lower bound of the energy where flash dose rates can be achieved

Not only beam attenuation, also beam scatter

Only the beam portion with a small enough emittance will be transported in the beam line


Largest beam loss happens here (at 70 MeV 99%+ of the beam is lost)



14/12/2021

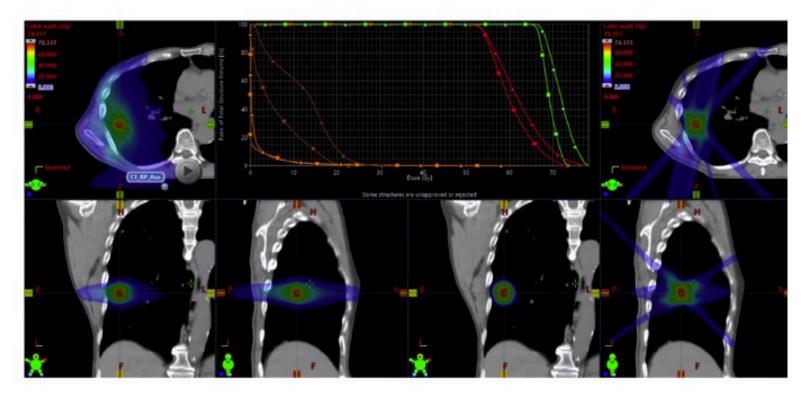
E. Scifoni - iNFN Pisa Seminars

Pencil Beam Scanning Dead Times..

dead time between spots in the same energy layer: ≅ms dead time between neighbouring energy layers @PSI≅80 ms Everyone else: 0.5-2s

So, Game over, or...

..2 Options:



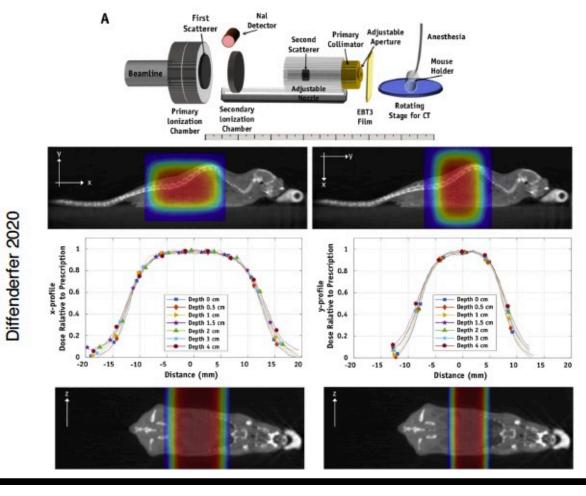
E. Scifoni - iNFN Pisa Seminars

INFN TIFPA

1st Option: Shoot-through

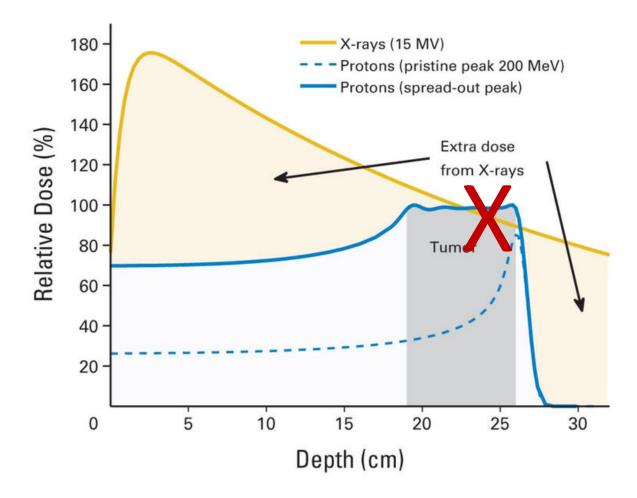
Forget about energy modulation and use protons as "expensive" photons in the Plateau

VMAT vs 10 non coplanar trasmission beams in lung sbrt



E. Scifoni - iNFN Pisa Seminars

1st Option: Shoot-through


ALL Preclinical studies, (and Clinical) Used this Option

E. Scifoni - iNFN Pisa Seminars

INEN TIEPA

So Forget about the nice Bragg Peak that everybody know and make protons so powerful?

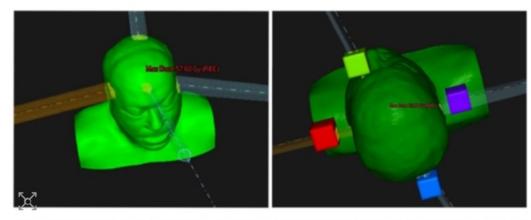
14/12/2021

E. Scifoni - iNFN Pisa Seminars

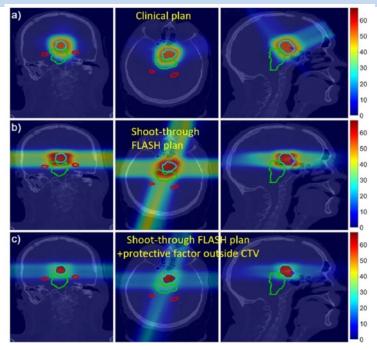
But it seems it work...

physicsworld

Magazine | Latest ▼ | People ▼ | Impact


particle therapy

PARTICLE THERAPY | RESEARCH UPDATE

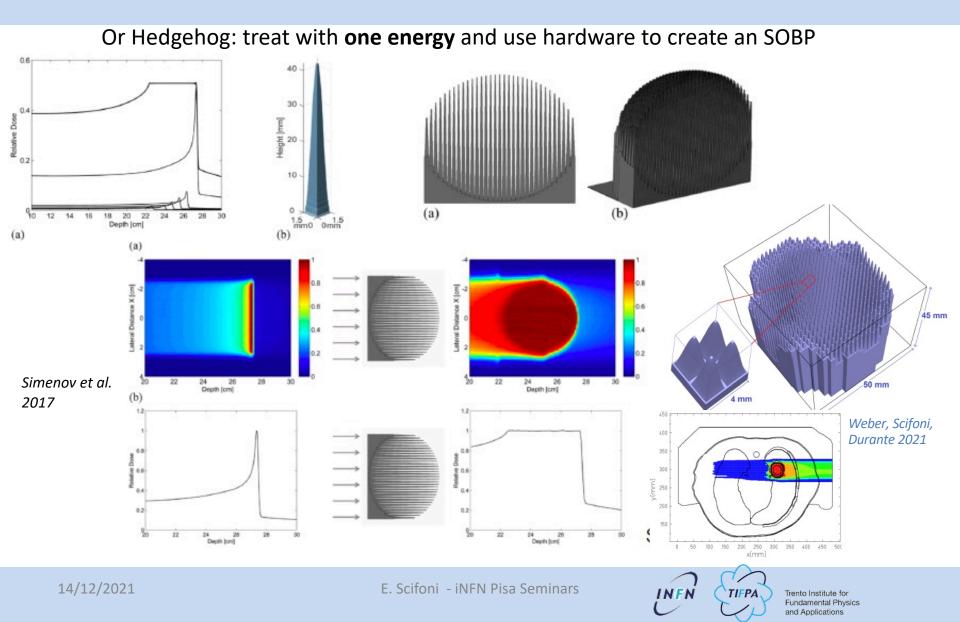

Q

Shoot right through: FLASH protons could eliminate Bragg peak constraints

30 Apr 2021 Tami Freeman

Left: a conventional clinical proton beam arrangement with four beams terminating in the target. Right: a shoot-through FLASH plan with four proton beams aimed at fictitious target boxes outside the patient's head. (Courtesy: *Phys. Med. Biol.* 10.1088/1361-6560/abe55a)

For the shoot-through plan, it's assumed a hypothetical FLASH protective factor (DREF) for normal tissues of 2.... (!)


"I had the idea that if we could do FLASH protons, we could get rid of the 'tyranny' of the Bragg peak," - F. Verhaegen

TIFPA

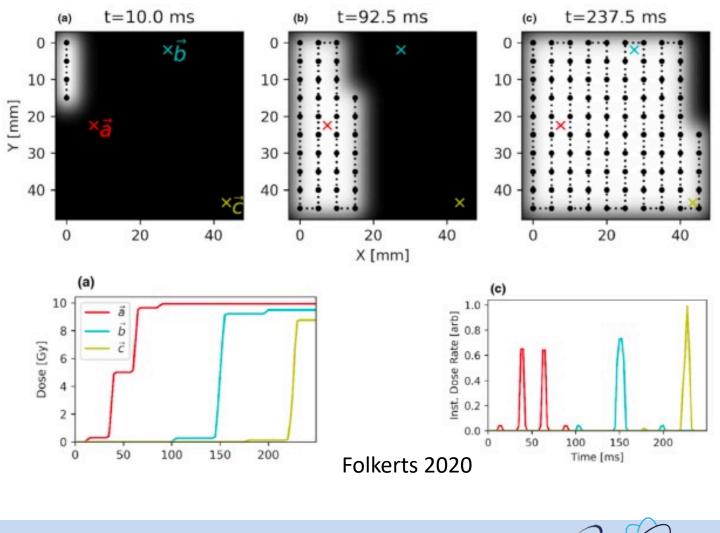
INFN

Option 2: Range Modulators

Transmission beams vs "hedgehog": pros and cons

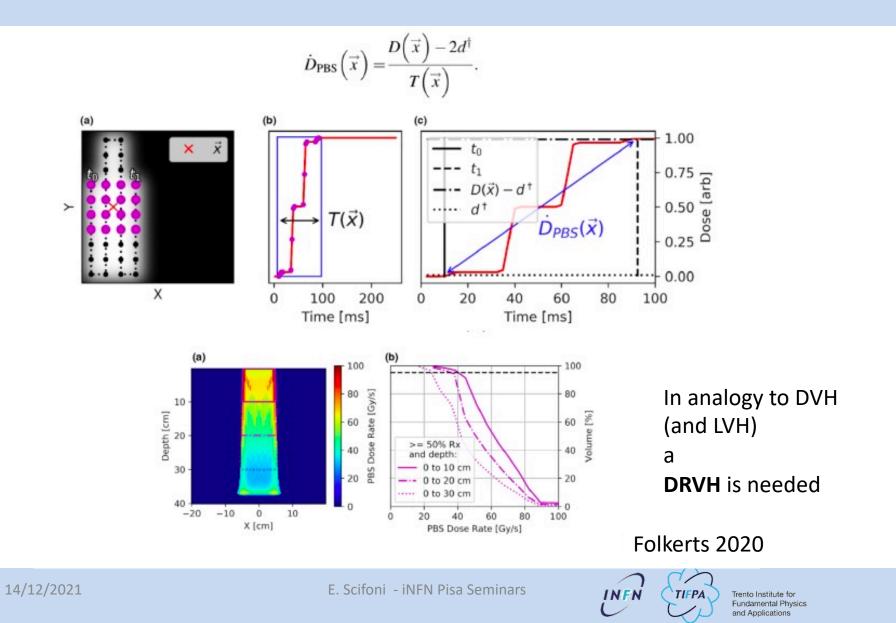
Pro:

Transmission beam: We use the highest energy thus mazimizing the flash potential

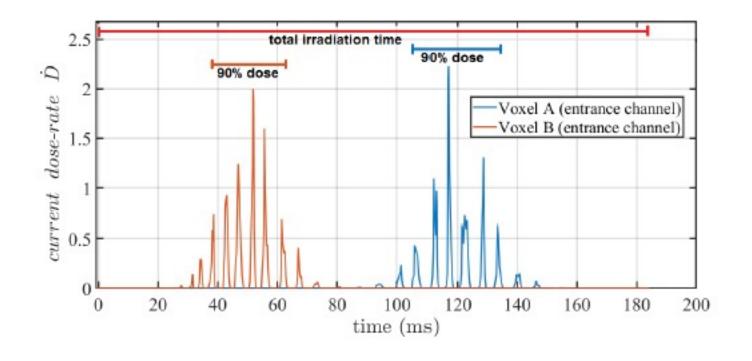

Hedgehog: We take advantage of energy modulation and create conformal dose distributions

Con:

Transmission beam: protons delivered like this are just very expensive photons. Some beam directions may be forbidden because the Bragg peak is in the patient.


Hedgehog: we need (non trivial) field specific hardware. Some dose conformation possible, but how good is the lateral penumbra? Both techniques: we are likely creating inferior dose distributions to full IMPT, i.e. there's no flash for free. At least part of the flash benefit will be needed to compensate for that.

Adapting the definition of Dose rate

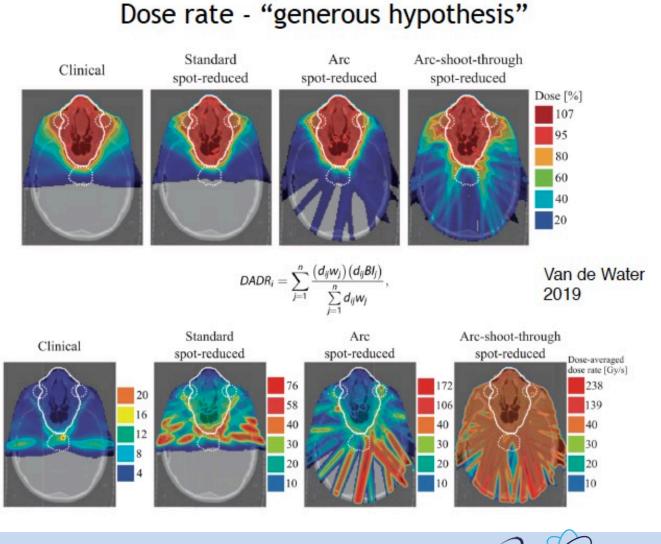


E. Scifoni - iNFN Pisa Seminars

INFN CTIEPA

Dose rate per voxel

Weber, Scifoni, Durante 2021

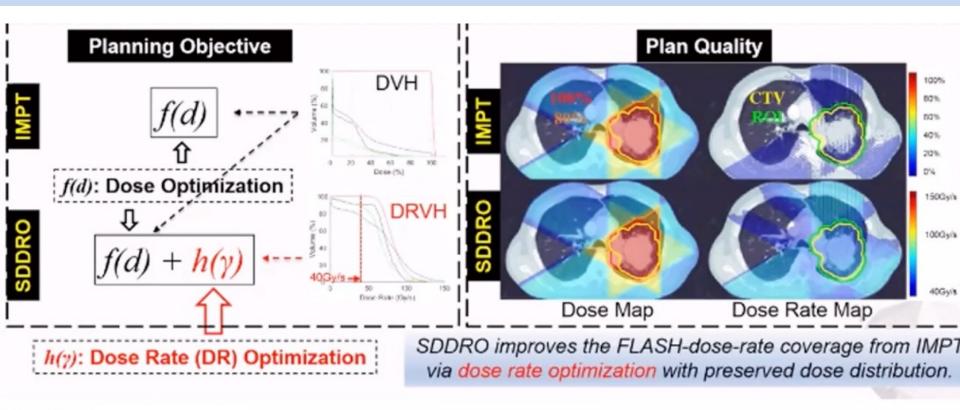


INFN

TIFPA

E. Scifoni - iNFN Pisa Seminars

Dose Averaged Dose Rate



14/12/2021

E. Scifoni - iNFN Pisa Seminars

Trento Institute for Fundamental Physics and Applications

Dose Rate optimization

Hao Gao FRPT 2021

INFN

TIFPA

Trento Institute for Fundamental Physics and Applications

Summary II – Dose delivery

- All this assume Dosimetry perfectly working (see previous section)
- All things considered, the residual degrees of freedom available for planning seem limited with current equipment.
- To better identify the room for Flash in the clinic, it is needed:
- Voxelwise time structure of the dose deposition available for plan evaluation. This requires tighter coupling between planning and delivery than we have now.
- Open questions:
 - How multiple flash "segments" within a single fraction combine with each other.
 - Can we use multiple fields?
 - What is the volume effect for Flash?
- A minimum dose threshold at 5-10Gy may be very problematic for flash in the clinic.
 - How accurate are current threshold values? Is it a binary threshold?
- Time structure + realistic biological models are needed for Flash to be an optimisation parameter

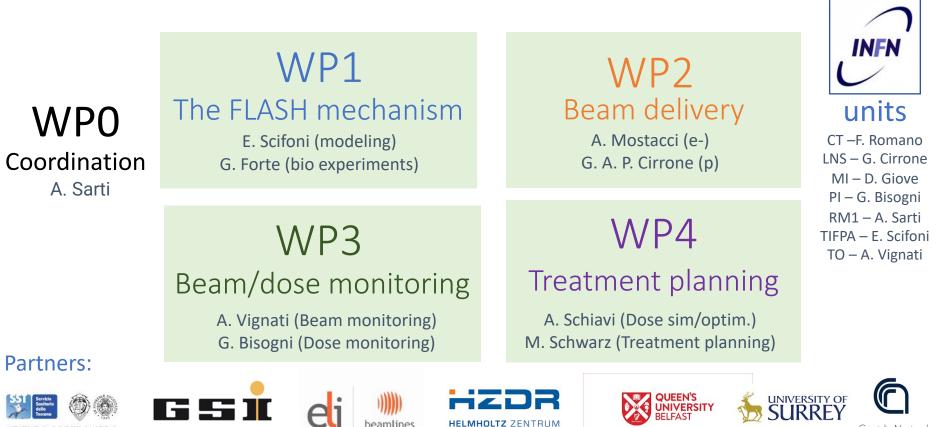
TIFPA

nd Applications

In conclusion:

- FLASH is a Biological effect, with Clinical applications
- But is fundamentally depending on Physics, on different scales, sides and flavours
- New avenues for Physics research, in different fields, are opened through it

rento Institute for undamental Physics nd Applications



AZIENDA OSPEDALIERO

UNIVERSITARIA PISANA

FRIDA - FLASH Radiotherapy with hlgh Dose-rate particle beAms project

INFN-CSNV Call 2022-2024

DRESDEN ROSSENDORF

Consiglio Nazionale delle Ricerche

Is FLASH the next SRS/SBRT?

Or Hyperthermia 2.0?

J. Breneman @FRPT

What Do We (Clinicians) Need To Advance FLASH?

- Better understanding of biologic mechanisms responsible for FLASH effect
- Better understanding of dose parameters for FLASH effects(s)
 - Minimum dose and dose rate for fractionated treatment
 - Are these parameters different for different tissue types and tumors?
- Photon/proton units capable of delivering conformal FLASH
- In vivo comparisons of optimized FLASH vs fractionated or hypofractionated conventional dose rate photons

What is most important to the FLASH effect

- Physics Tony Lomax
- Chemistry Douglas Spitz
- Biology Charlie Limoli
- Clinic Phillip Poortmans

But only one can survive!

You choose

Physics (T. Lomax) won!

...simply telling that:

Reason 1 – It all depends on physics The FLASH chain of events starts with physics	Reason 2 – Understanding the effect Physicists are working hard to develop mechanistic models of the FLASH effect
Reason 3 – Treatment planning. Only physics can provide tools to predict the 3D distribution dose, dose-rate and the FLASH effect within the patient	
	Reason 4 - Dosimetry.
Reason 5 - Delivery.	Only physics can ensure that the correct dose and dose-rate will
Only developments in physics can <i>deliver</i> the radiation at the	be delivered
high dose rates required to trigger the FLASH effect	

Main References

- Vozenin, M-C., Jolyon H. Hendry, and C. L. Limoli. "Biological benefits of ultra-high dose rate FLASH radiotherapy: sleeping beauty awoken." *Clinical oncology* 31.7 (2019): 407-415
- Wardman, P. (2020). Radiotherapy Using High-Intensity Pulsed Radiation Beams (FLASH): A Radiation-Chemical Perspective. *Radiation Research*,
- Montay-Gruel, Pierre, et al. "Hypo-fractionated flash-rt as an effective treatment against glioblastoma that reduces neurocognitive side effects in mice." *Clinical Cancer Research* (2020).
- Esplen, N. M., Mendonca, M. S., & Bazalova-Carter, M. (2020). Physics and biology of ultrahigh dose-rate (FLASH) radiotherapy: a topical review. *Physics in Medicine & Biology*
- Boscolo, D., Krämer, M., Fuss, M. C., Durante, M., & Scifoni, E. (2020). Impact of target oxygenation on the chemical track evolution of ion and electron radiation. *International Journal of Molecular Sciences*, *21*(2), 424.
- Boscolo, D., Scifoni, E., Durante, M., Krämer, M., & Fuss, M. C. (2021). May Oxygen depletion explain the FLASH effect? A chemical track structure analysis. *Radiotherapy and Oncology 162,68-75*
- Labarbe, R., Hotoiu, L., Barbier, J., & Favaudon, V. (2020). A physicochemical model of reaction kinetics supports peroxyl radical recombination as the main determinant of the FLASH effect. *Radiotherapy and Oncology*, *153*, 303-310.
- Wilson, Joseph D., et al. "Ultra-high dose rate (FLASH) radiotherapy: Silver bullet or fool's gold?." *Frontiers in Oncology*9 (2020): 1563.
- Bourhis, J., Montay-Gruel, P., Jorge, P. G., Bailat, C., Petit, B., Ollivier, J., ... & Germond, J. F. (2019). Clinical translation of FLASH radiotherapy: Why and how?. *Radiotherapy and Oncology*, *139*, 11-17
- Ashraf, M. R., Rahman, M., Zhang, R., Williams, B. B., Gladstone, D. J., Pogue, B. W., & Bruza, P. (2020). Dosimetry for FLASH radiotherapy: a review of tools and the role of radioluminescence and cherenkov emission. Front. Phys 8,328.
- Weber, U. A., Scifoni, E., & Durante, M. (2021). FLASH radiotherapy with carbon ion beams. *Medical Physics*. doi: 10.1002/mp.15135. Epub ahead of print
- Folkerts MM, Abel E, Busold S, Perez JR, Krishnamurthi V, Ling CC. A framework for defining FLASH dose rate for pencil beam scanning. Med Phys. 2020;47(12):6396-6404

TIFPA

Fundamental Physics and Applications

Credits

- Daria Boscolo
- Martina Fuss
- Michael Krämer
- Marco Durante
- Gianmarco Camazzola
- Uli Weber

Trento Institute for Fundamental Physics and Applications

- Francesco Cordoni
- Marco Battestini
- Francesco Tommasino
- Chiara La Tessa
- Marta Missiaggia

E. Scifoni - iNFN Pisa Seminars

Andrea Attili

Trento Institute for Fundamental Physics and Applications

14/12/2021

Thanks for your Attention!

...and Merry . Chrístmas 🌺

14/12/2021

E. Scifoni - iNFN Pisa Seminars

Trento Institute for Fundamental Physics and Applications