Search for single vector-like quarks at CMS with machine learning techniques

Francesco Carnevali INFN & Università degli Studi di Napoli Federico II

21 December 2021

Vector-like quarks (VLQs)

Several extensions of the Standard Model (SM) predict the existence of VLQs

Properties of VLQs:

- Spin ½ fermions
- Left-handed and right-handed components behave in the same way under the SM symmetry group
- Vector current couplings to the weak gauge bosons
- Non-Yukawa coupling mass-terms for VLQs are allowed.

SU(2) Multiplets		
Singlets	Т, В	
Doublets	(T,B), (X,T), (B,Y)	
Triplets	(X,T,B), (T,B,Y)	

Туре	Charge
Х	+5/3
Т	+2/3
В	-1/3
Y	-4/3

Search for VLQs at CMS

- Searches for vector-like quarks (VLQ) at the CMS experiment @ LHC
 - LHC Run II pp collision data, $\sqrt{\rm s}$ =13 TeV , 137 $fb^{\text{-1}}$
- Single VLQs production:
 - T \longrightarrow t Z/H/A*
- •Different final states:
 - $t \rightarrow b l v$
 - $Z/H/A \longrightarrow b b$

*<u>https://arxiv.org/abs/1907.05929</u>

Vector-like guark single production

Search for single VLQ T at CMS

• Signal: left-handed single VLQ T, in the t Z/H/A decay channel

 $bW \longrightarrow T$ $T \longrightarrow t Z/H/A$

- Hadronic Z/H/A decay and in leptonic top quark decay
- Define new identification criteria for top quark reconstruction making use of ML techniques

Final state objects - top decay $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$

Leptonic top quark decay:

- 1. >= 1 Lepton
- 2. Met assigned to neutrino production
- 3. >=1 JetAK4 (ΔR =0.4), from bottom quark hadronization
- At least 1 Top quark candidate:
 - 1. JetAK4 Pt>30 GeV
 - 2. Lepton Pt>10 GeV

Top Quark Reconstruction

Top quark candidates category depends on $\Delta R(j,l)$

 $\Delta \mathbf{R} = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$

6

Top Quark Classification - True

Francesco Carnevali 19/12/2021

Top Quark Classification - QCDlike

Top Quark Classification - Other

Top Merged: $b \rightarrow ..+\pi \rightarrow ...+\mu\nu$

Top Resolved: $Z/\gamma \rightarrow \mu^+\mu^-$, $b \rightarrow ...+\pi \rightarrow ...+\mu\nu$

Top Quark Classification - Other

Multiclass BDT Training

Use of machine learning algorithm (XGBoost) to improve top quark selection:

- Top category: Resolved or Merged
- Lepton: Muon or Electron

- ► 8 Training Categories
- Top p_T bin: Low [0,500) or High [500,Inf)

Lepton preselection requirements: standard Id, Isolation, and PV distances.

The BDT algorithm provides three different scores for each candidate:

• True

- QCD like (both jet and lepton don't match with MC truth)
- Other (1 object matches)

Multiclass BDT Training

The BDT algorithm provides three different scores for each candidate, the probability of belonging to each of the three groups:

P(T) + P(QCD) + P(Oth) = 1

Top Candidates: Resolved Low Pt (μ +Jet)

T vs QCD

QCD

Other

Multiclass BDT Training

The BDT algorithm provides three different scores for each candidate, the probability of belonging to each of the three groups:

$$P(T) + P(QCD) + P(Oth) = 1$$

Top taggers:

$$TvsQCD = \frac{P(T)}{1 - P(Oth)} = \frac{P(T)}{P(T) + P(QCD)}$$
Preselection cut:
 $\varepsilon_{s} \approx 99\%$
 $\varepsilon_{s} \approx 99\%$

Multiclass BDT Training

The BDT algorithm provides three different scores for each candidate, the probability of belonging to each of the three groups:

$$P(T) + P(QCD) + P(Oth) = 1$$

Top taggers:

$$TvsOth = \frac{P(T)}{1 - P(QCD)} = \frac{P(T)}{P(T) + P(Oth)}$$

Selection cut:

WP Loose (misId Oth≈10%)

WP Tight (misId Oth≈1%)

Physics Background

- The signal region is characterized by:
 - 1 *tight* Top,
 - 1 *tight* H/Z/A-tagged jet.

The main SM backgrounds:

- tī,
- W+Jets,
- QCD MultiJet.

Conclusions and Next Steps

Conclusions:

- Search for single VLQ T production, focusing on the decay $T \rightarrow t Z/H/A \rightarrow blv bb$
- ML techniques are used as identification criteria for the leptonic top quark decay

Next Steps:

- Extend the analysis to all Run II Data
- Identify discriminating variables to improve signal to background discrimination
- Set T production cross section upper limits

Francesco Carnevali 19/12/2021

BACKUP

VLQ production and decay

VLQs could be produced both singly and in pair:

- Pair production
 - Strong interaction processes
 - Model independent cross section, suppressed for large VLQ mass
- Single production
 - Electroweak processes
 - Cross section depending on VLQ mass and coupling to SM particles
 - Models foresee preferential mixing with 3rd generation SM quarks

Туре	Decay channel
Х	tW
Т	tZ,tH,bW
В	bZ,bH,tW
Y	bW

Final state objects - Z/H/A decay

Top Quark Reconstruction

Mass distribution of the reconstructed top quark, with the lepton, Met and Jet.

The neutrino momentum along the beam axis was estimated by imposing \sqrt{s} (l,MET)= 80,4 GeV (W Mass).

Xbb ParticleNet Tagger

ROC Curve

The Xbb ParticleNet MD tagger performs a better selection than the Double B tagger, both in the H vs All, and H vs W.

Studies has been done also on the Z->bb selection, and the tagger performs better than the DeepAk8 tagger.

BDT

BDT algorithm is used to improve the top quark reconstruction

• Input variables (top, jet, lepton):

^x1,...,n[;]

- Each tree has a weight ω ;
- Final output is the weighted average of each output:

$$y(\vec{x}) = \sum_{k=1}^{N_{trees}} w_k C^k(\vec{x})$$

• The Multiclass BDT provides k different scores, each of them is the probability of belonging to the i-th category.

Multiclass BDT Selection

The BDT training has been improved, using the same variables, but with a large training dataset.

In each event only Top Candidates with a score greater than a threshold, in order to reject the 90% background, are selected (WP90).

Only events with at least 1 Top WP90 are selected.

Two differente Top Selected Collections:

- Top WP90, Loose
- Top WP99, Tight

µ/e	Resolved	Merged
Low p _T	2	4
High p _T	3	1