Gr1 Napoli meeting. 21-12-2021

Dark sector searches at Belle II

- Focus on activities @Napoli:
 - Search for an *invisible Z'*;
 - Search for the *dark Higgsstrahlung* process;

Marcello Campajola

INFN Napoli

marcello.campajola@na.infn.it

Gr1 Napoli meeting. M. Campajola

Dark sector searches

Motivations

The absence of dark matter discoveries at the electroweak scale by the LHC or direct detection experiments motivates the interest in models with low-mass dark matter candidates.

• Theoretical scenarios introducing light dark matter with O(MeV-GeV) mass need light mediators too, e.g. [1, 2].

Not just solving the DM puzzle. Could explain:

- some astrophysics anomalies (positron excess, 3.5 keV line, ...);
- the $(g-2)_{\mu}$ anomaly;
- some flavour anomalies (LHCB, Belle, ...).

Dark Sector searches @ colliders. Typically looking for:

- Mediators decaying to SM particles;
- Missing energy/momentum signatures;
- both;

[1] Batel et al., *Phys. ReV. D* 80 (2009) [2] Essig et al. <u>arXiv:1311.0029 (2013)</u>

Belle II @ SuperKEKB

Not just a B factory

An intensity frontier machine:

- Will provide the world highest luminosity ($L = 6.5 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1}$).
- To date ~250/fb collected.
- Final goal: 50/ab.

A wide physics program:

• B-physics, charm, tau and

Ideal environment for dark sector searches:

- High luminosity;
- Closeness to the light region;
- Well defined initial state, closed kinematics;
- Clean environment and low background;
- Hermetic detector;
- Excellent PID capability;
- Low multiplicity triggers (non trivial);

Many DS searches ongoing and first results for already out

e+ 4 GeV 3.6 A

Invisible Z' search

Introduction

A massive gauge boson Z' coupling only to the 2nd and 3rd generation of leptons [1,2].

This model may explain:

- DM puzzle;
- $(g-2)^{\mu}$ anomaly;
- B-physics anomalies: e.g., R_K, R_{K*};

Experimental signatures:

- Visible decay into a muon (tau) pair. Constrained by <u>BaBar(2016)</u> and <u>CMS(2019)</u> and neutrino-nucleus scattering experiments;
- Invisible decay in SM neutrinos or DM if kinematically accessible. First physics result from <u>Belle II (2020)</u>;

Here, looking for an invisibly decaying Z' produced with a pair of muons.

Invisible Z' search

Analysis in short

Signal signature: a peak in the mass distribution of the recoiling system against $\mu\mu$ pair;

Background: everything with 2 particles identified as muons and missing momentum: $\mu\mu(\gamma), \tau\tau(\gamma), ee\mu\mu$;

Selection:

- Just two tracks and low activity in the calorimeter;
- Tau suppression based on kinematics;

Mass scan plus Bayesian counting technique adopted.

Measurement performed with 2018 pilot run data (~276/pb):

- No hints for signal;
- UL on cross section and the coupling constant;

First results ever for the Z' to invisible decay. First physics paper by Belle II

Invisible Z' search

What's next

Working at the analysis update with 2019 + 2020 data (~80 fb-1)

Major improvement wrt Phase2 results:

- ~ x285 data used in Phase2 analysis.
- Better detector and analysis tools (for example MuonID);
- More inclusive trigger lines;
- Improved background suppression:
 - Better understanding of $\mu\mu\gamma$;
 - Neural network based cut;
- Fitting procedure wrt counting technique;

Starting to probe the $(g-2)^{\mu}$ band.

Dark Higgsstrahlung search

Introduction

New massive gauge boson A' of coupling to the SM photons through the kinetic mixing with strength ε , called **dark photon** [1,2].

A' mass can be generated via a spontaneous symmetry breaking mechanism, adding a **dark Higgs boson** *h*' to the theory [3].

Both particles (A' h') can be produced via the **dark Higgsstrahlung process**. Different signature depending on the masses relationship:

- $m_{h'} > m_{A'}$: $h' \to A'A' \to 4l$, 4had, 2l + 2had. Investigated by <u>BaBar (2012)</u> and <u>Belle (2015)</u>
- $m_{h'} < m_{A'}$: h' is long-lived, thus invisible. Constrained by <u>KLOE (2015)</u>.

Here, investigating the invisible dark higgs case with a dark photon decay to muons

P. Fayet, <u>Phys. Lett. B 95, 285 (1980),</u>
 P. Fayet, <u>Nucl. Phys. B 187, 184 (1981)</u>
 B. Batell, et al., <u>Phys. Rev. D 79, 115008 (2009)</u>

Dark Higgsstrahlung search

Analysis in short

Signal signature: a 2d peak in the dimuon versus recoil mass distribution;

Background: everything with 2 particles identified as muons and missing momentum: $\mu\mu(\gamma), \tau\tau(\gamma), ee\mu\mu$;

Selection:

- Just two tracks and low activity in the calorimeter;
- Kinematics behavior, helicity angle;

2D mass scan plus Bayesian counting technique adopted.

Analysis completed with 2019 dataset (~8.34/fb);

Under collaboration internal review

Conclusion

Belle II is exploring Dark Sectors at the luminosity frontier:

- \circ Z' -> invisible;
- \circ ALPs -> $\gamma\gamma$;
- Dark Higgsstrahlung in a short term;

Many other searches ongoing:

• dark Higgs, dark photon, visible Z', Long-lived dark particles

Will lead in the MeV-GeV mass range in the coming years

Stay tuned... new results are coming.

