

Study of GEM currents anomalies@GOLIATH magnet (CERN)

A.Boiano, <u>A.Cagnotta</u>, F.Cassese, A.De Iorio, F.Fabozzi, O.Iorio, A.Pandalone, P.Paolucci, G.Passeggio, B.Rossi, A.Vanzanella

21/12/2021

Outline

CMS Upgrade

✤Triple-GEM

INFN Napoli Pico-ammeter (PICO)

PICO @ Goliath test

Upgrade of the Muon Detectors

- □ 2026: HL-LHC □ Instantaneus Luminosity: $2 * 10^{34} cm^{-2} s^{-1} \rightarrow 5 * 10^{34} cm^{-2} s^{-1}$ □ Pile-up events : $\sim 37 \rightarrow \sim 200$
- $\hfill \hfill \hfill$
- GEM technology provides:
 Good time resolution
 High rate capability

GE1/1 Upgrade

Performances

- □Space Resolution <100µm □Time Resolution *O*(10ns)
- **GEM** technology
 - □Copper 5µm
 □Kapton 50µm
 □Holes density 50-100/mm²

Triple-GEM

PICO:

pico-ammeter custom made @ INFN Napoli for Triple-GEM characterization

PICO

- PICO allows a simultaneous monitoring of 7 GEM electrodes, both current and voltage
- Sampling 380Hz; Typical sampling of CAEN boards O(Hz)
- □ Resolution ≤30pA (much smaller than noise)
- □ PICO fully tracks sparks that CAEN board (A1515) is not able to detect

PICO@Goliath

Study of GEM behaviour with magnetic field up to 1.4T at the CERN magnet named Goliath

As part of these tests:

Commissioning of 2 INFN Napoli PICOs

Characterization of discharges (spikes) through its main properties (**amplitude**, **slope**) and simultaneus analysis of the 7 channels (Drift, G1T, G1B,...)

□Search for precursory phenomena of discharges (a particular current/voltage behavior, a sequence of small discharges,...)

Installation in the experimental area

Preliminary studies on discharge signals

PICO as inspection tool for small currents

Example of an abnormal current not seen by the CAEN board.

still under investigation!

Conclusions

- Commissioning of PICO fully successful for the entire week without any kind of malfunctioning
- PICO is the perfect instrument to study GEM currents anomalies, it is designed ad hoc for that!
- □ It is well suited instrument to detect and characterize different types of discharges, in particular we could individuate the GEM foil in which the spike is located
- □ There will be chances for new tests before RunIII

BACKUP

Goliath test goals

Reproduce anomalies (discharges and/or trips) as seen at P5 with GE1/1 detectors during magnet ramp

Define an HV setting such as to be able to keep the GE1/1 detectors in a safe status during the CMS magnet ramp

Define a proper procedure to burn the short-circuits in the operating gas mixture $Ar-CO_2$ (70-30%)

P5 observation (october-november2021)

TRIPS during ramp

Hypotesis:

Microscopic dust that 'approach' the GEM electrodes

- Dimensions <10μm (detectors assembled in class 1000 clean room)
- Probably metalic but not ferromagnetic (such materials are not present)
- Light dust particles can detach from surfaces with the small force they receive from the magnetic field change (also if they are para/diamagnetic)

GEM foils are segmented (40 for short and 47 for long) and the segments are decoupled with resistors One short means loosing ≈2.5% of the detector active area

N.B.

GEMHV_DFiorina_CMSWeek

• Same particles that deposit near hole but no electric field is present

SHORTS with detector OFF

• When slowly ramping the detector, the dust can melt and create a permanent conductive path

Experimental setup

- Goliath magnet (up to 1.4T) present at the H4 beam line in North Area
- Four chambers were selected for the test:
 - GE1/1-L-X-CERN-0002;
 - GE1/1-L-X-CERN-0009;
 - GE1/1-S-X-PAK-0005;
 - GE1/1-S-VII-CERN-0006.

Magnetic field in CMS and in Goliath

- GE1/1 subsystem is inside the CMS solenoid
- The magnetic field lines are "almost" perpendicular to GE1/1 detector
- On the contrary, the gravity force is parallel to the detectors
- Nominal ramp rate of the CMS magnet of ≈1.5 A/s (https://cmsonline.cern.ch/webcenter/portal/cmsonline/pages services/magnetinfo)

✓ magnetic field lines
 → Goliath magnet:
 magnetic field lines ⊥ GEM-foils

 \rightarrow *P5 Solenoid:* magnetic field lines \perp GEM-foils

✓ gravity force

→ Goliath magnet: gravity force \perp GEM-foils → P5 Solenoid:

gravity force GEM-foils

Inner magnet z=-12.7 (mm)

EXPERIMENTAL SETUP: DETECTOR CONTROL SYSTEM

PICO LabView software

Goliath info

- The software used for tune the magnetic field allows as to insert an input current corresponding to a magnetic field in the cavity.
- The magnet reaches the input current level in two step:
 - Goliath step (fast ramp)
 - David step (slow ramp)

• Different current values are used during the test:

Current	Magnetic filed (T)
400 A	0.2
800 A	0.4
1.2kA	0.6
1.6kA	0.8
2.0kA	0.9
2.4kA	1.0
2.8kA	1.2
3.6kA	1.4
MAX	1.5

• The current can be set with a different sign, in that case we have the same magnitude of the field but in the opposite direction

Magnetic field sensor

- Hall probe installed inside the experimental stand
 - → THM1176 3-axis Hall Magnetometer
 - → 3-axis Hall sensor enabling 3-axis field measurements
 - \rightarrow monitor the magnet field around the GE1/1 chambers (monitor the ramp-up/down rate of Goliath magnet)
 - → dedicated software for real-time monitoring and data saving

Magnetic field monitor

Field components

100 time

- ✓ the code is written in Python code (by Antonello)
- ✓ the magnet field is recorded and saved with frequency ~ 5Hz
- ✓ the magnet field can be monitored with a refresh rate of 1Hz

Preliminary observation

 \Box Magnet ramps easly trigger trips (i.e. sparks) in the detectors (HV ON) This do not depends on the reached field (the detachement of the dust from the walls requires just a little force)

Such sparks do not produce shorts (the dust is burned instantaneosly in the foils)

• Magnet ramps can cause shorts if the detectors are OFF • Only one short produced in such a way (low chance) Short successfully 'burned' with a Megger hit (in P5 configuration: 40m of HV cable and Ar/CO2)

After multiple ramps and sparks the number of trips start to reduce Chamber dust is burned during the multiple sparks □No trips detected during passage from standby-physics with field stable ON Field was half of P5 one