Introducing Qibo

Towards an agnostic toolbox for quantum simulation and hardware control

Stefano Carrazza
30th November 2021

INFN

<R

Istituto Nazionale di Fisica Nucleare

Introduction

Introduction

From a practical point of view, we are moving towards new technologies, in particular
hardware accelerators:

CPU GPU FPGA/ASIC Quantum chip
— i
I . [o
= |
—

Moving from general purpose devices = application specific

Challenges

However, there are several challenges:
e simulate efficiently algorithms on classical hardware for QPU?

e control, send and retrieve results from the QPU?

e error mitigation, keep noise and decoherence under control?

How can we interact with QPU?

Construct a Quantum Middleware:

/=\
O=111011 ’ ‘) E g
O=t8111 \) — E g
O=11111

oomo

Simulation Network Algorithms Control

Quantum Middleware

How can we interact with QPU?

Construct a Quantum Middleware:

_ = =1
O=111011 ’ ‘) = —
O=t8111 \) — E g
O=11111

oomo

Simulation Network Algorithms Control

Quantum Middleware

= Qibo: an open-source full-stack middleware.

Introducing Qibo

Introducing Qibo

Qibo is an open-source full stack API for quantum simulation and hardware control.
It is platform agnostic and supports multiple backends.

Language API

Quantum algorithms & models

leO ecosYStem Code examples and Tutorials
~——_

Laboratory tools

https://github.com/qiboteam/qibo https://arxiv.org/abs/2009.01845

https://github.com/qiboteam/qibo
https://arxiv.org/abs/2009.01845

/% | UNIVERSITA
5 | DEGLISTUDI
DI MILANO

SN kS

IFAES =

UNIVERSITATos
i) BARCELONA

9Q

Mational University of Singapore

National
’ [T Supsrcomputing
...............]
i

e Conire box =
CO =

£75

() L N—

Abstractions in Qibo

User's problem

Code solution using Qibo

e Single piece of code

e Automatic deployment on

Execute code

simulators and quantum devices

e Plugin backends mechanism

Classical Hardware Quantum Hardware
(simulation) (cloud evaluation)

CPU GPU Multi-GPU Superconductors Ion trap

QIBO Backends

Abstractions in Qibo

Qibo Stack

Quantum Algorithms

Simulation Hardware
backends backends

Abstraction Layer
(QC primitives)

Interface for users: model
definition and execution.

Implementation of algorithms
based on quantum operations.

Backend specialization for
classical and quantum hardware.

Code abstraction for circuit
and gates representation.

Backends in Qibo

qibojit

Classical Hardware qibotf GPU/CPU
(quantum simulation) high performance

tensorflow
numpy :l— CPU / lightweight

Qibo backends

Quantum Hardware

(control & execution) giboicarusq :I_ T

This layout opens the possibility to support:

e multiple classical and quantum hardware specifications
e hardware accelerators for simulation (single-GPU and multi-GPU)

numpy -
N?%’ NumPy
pip install gibo

Simulator based on tensordot and linear algebra operations.

Features:
* Cross-architecture (x86, armé4, etc).
« Cross-platform.
* Fast for single-threaded operations.

tensorflow

LA

TensorFl

Simulator based on tensorflow primitives (einsum, matmul).

pip install tensorflow

Features:
* Multithreading CPU.
+ Single GPU.

* Gradient descent on quantum circuits.

q ibotf f . n&l}gk\.
TensorFlow @

Simulator based on tensorflow custom operators in C++ and CUDA.

pip install gibotf

Features:
« Excellent single node performance.
* Multithreading CPU, single GPU and multi-GPU.
* Low memory footprint.

L]

gibojit 9 . '

pip install gibojit Numba CuPy

Simulator based on numba and cupy operations.

Features:
* Excellent single node performance.
* Multithreading CPU, single GPU and multi-GPU
* Cross-platform (just-in-time compilation)
* Works on NVIDIA and AMD GPUs.

Computational models in Qibo

Computational models in Qibo

QIBO Language API

Circuit
Gates
Primitives
Measurements
Quantum Circuits CEUINZEE
VQE
Variational
ML
Pre-coded models O
QFT

Hamiltonians
Primitives Time evolution
Trotterization
Quantum Annealing
QAOCA
Adiabatic evolution
Pre-coded models

Scheduling optimization

Hamiltonian codebase

10

Quantum Circuits

Quantum circuits

The quantum circuit model considers a sequence of unitary quantum gates:

¥y =Walh) —) ¥)

11

Quantum circuits

The quantum circuit model considers a sequence of unitary quantum gates:
¥y =Walh) —) ¥)

For example a Quantum Fourier Transform with 4 qubits is represented by

|0) R Rs | R

10) . H Ry |

|0) H R

0 «—{n]

Models based on Grover's algorithms and Shor's factorization algorithms.

11

Quantum gates

Operator Gate(s) Matrix
Pauli-X (X) = [
e Single-qubit gates Pauli-Y (¥) i
e Pauli gates Pauli-z (2) {z- b
e Hadamard gate Hadamard (H) ~{u}- &[]
e Phase shift gate Phase (S, P) s} [9
e Rotation gates /8 (T) []
e Two-qubit gates Comellad ot 1 []
e Conditional gates R [' 0]
e Swap gate dzF - 860
e fSim gate SWAP XL [; 1]
e Special gates: Toffoli o
R

12

Quantum circuit simulation

The final state of circuit evaluation is given by:

Y (o1,...,0n) = ZG(T,T’)?/)((U,...,’T,,...,O'N),

T

where the sum runs over qubits targeted by the gate.

e Linear algebra approach.

e Possibility to parallelize and optimize operations.

13

Quantum circuit performance results

QFT (complex64) QFT (complex128)
| -+ Qibo@GPU) - Qibo (GPU)
10%4 _ 4~ Qibo (multi-GPU) | =+ Qibo muti-GeU)
] = Qibo(cPU) . 10 = Qibo (CPU)
10 Qibo (CPU-1) Qibo (CPU-1)
X QCGPU (GPU) Qulacs (GPU) v o4
3 10°1 — qeapu (cpu) 3 10'{ — Qulacs CPU)
2] — ce H —— InelQS (CPU)
g —— TFQ (CPU) —— Qiskit (CPU)
] % | — pyuilceu
) e PyQuil (CPU)
10
- 10°
10°
3 10 i5 20 75 30 35 5 10 15 20 25 30
Number of Qubits Number of Qubits
=0 - =0 =
2 2 0 2 =
S SUO < S o
2 2 2 2
&, 5 52 153
] g 2]
2 2 100y s 210!
£l] g]
-9 &~ o 0 o
10 20 30 10 20 30 10 20 30 10 20 30
Number of Qubits Number of Qubits Number of Qubits Number of Qubits

Quantum Fourier Transform performance.

14

Multi-GPU trade-off

10* I-thread
10-threads
W 20-threads
B 40-threads
B single-GPU
multi-GPU

10°

4x

Time (sec)

10! 2x
2
2x *

10°

30 31 32 33

29
Number of Qubits

Quantum Fourier Transform performance.

15

Variational Quantum Circuits

Variational Quantum Circuits

Typical variational quantum circuits and data re-uploading algorithms:

0) A
0) - U(®,2) A
0) A

0 { Classical Optimizer .f L(0) e

Define new parametric model architectures for quantum hardware:

= Variational Quantum Circuits & Quantum Machine Learning

16

Variational circuit

Variational circuits are inspired by the structure of variational circuits used in
gquantum machine learning.

Standard Circuit Gate fusion

ai@@@#

Y

= [#]|[#] =

Y Yy

Y] Yy

Ry

Qibo implements the gate fusion of four R, and the controlled-phased gate, C,
= Qibo provides multi-qubit gate operators for CPU and GPU 17

Benchmarks

Variational 5 layers (complex64) Variational 5 layers (complex128)
10¢] = Qibo (GPU) A - Qibo (GPU)
-#- Qibo (CPU) . Jo3] T Qibo(CPU)
o]+ QibocpUD u 4~ Qibo (CPU-1) -
QCGPU (GPU) Qulacs (GPU)
| — Qcapu cpu) —— Qulacs (CPU)
10°4 — Cirq (cPU) 2 101] — InelQS (CPU)
—— TFQ (CPU) Iy —— Qiskit (CPU)
10! g —— PyQuil (CPU)
T £ 107
10"
107
1074 Fa¥
5 10 5 20 25 30 35 5 10 15 20 25 30
Number of Qubits Number of Qubits
510 56 |5
& = =
3] S S
g n =10
£10' £ £
- & (57
—— E 2, 2
L0 2" g 10!
Z 10 £ | oosssssssse. 2
o~ -1 0 - o
20 30 10 20 30 10 20 30 10 20 30
Number of Qubits Number of Qubits Number of Qubits Number of Qubits

Variational circuit simulation performance comparison in single and double precision.

18

Summary of circuit-based built-in models in Qibo

Variational quantum eigensolver

Quantum approximate optimization
algorithm (QAOA)

Feedback-based algorithm for quantum
optimization (FALQON)

Quantum Neural Networks

e Variational quantum classifier
e Variational quantum regressor
e Style-based quantum GAN

cGev?)

tiGev?)

wol [N

Generated - 10° samples

Generated - 10° samples

Tor i3
siGev?)

ence | generated

Generated - 10° samples

19

Quantum Annealing

Qibo features

e Annealing quantum processors
e Hamiltonian database)
e Time evolution of quantum states Zﬁa‘w(t» = H(s)|y(t))
e Adiabatic Evolution simulation
Scheduling determination

H(t) = (1—s(t))Ho + s(t)H,

Trotter decomposition

=40 —— Evolved state D

432 — Ground state
0.95

20

Adiabatic evolution

TFIM Adiabatic Evolution (6t = 0.01, T= 1, complex128)

10¢

=10

100

Troter (CPU)

Exp (GPU)

Exp (CPU)

} = RK4 GPU)
e-a-0-0-0-0" — RK4(CPU)

o-o-0-o® Trotier RK4 (GPU)

Trotter RK (CPU)

Adiabatic evolution performance using Qibo and TFIM for exact and Trotter solution.

5 10 15 20 25 30
Number of Qubits
g
Q¢
Vs
'M ot /,/
\
eovos0s000s00000000000000300
4
10 20 30 20 30
Number of Qubits Number of Qubits

21

Quantum hardware control

Software control for quantum hardware

Ideally, we would like to:

Define a circuit and/or algorithm.

Send and retrieve results from QPU:

import numpy as np
from qibo import models, gates

create a circuit for N=3 qubits
circuit = models.Circuit(3)

. — » # add some gates in the circuit
- circuit.add([gates.H(0), gates.X(1)])
circuit.add(gates.RX(0, theta=np.pi/6))
ezecute the circuit and obtain the

final state
final_state = circuit()

nmnmnn
Oood

Users Circuit using Qibo QPU

22

Software control for quantum hardware

From a hardware perspective this requires:

e Convert circuit into microwave pulse sequences.

e Operate multiple instruments and FPGAs.

Perform system calibration periodically.

Schedule and execute operations.

Reconstruct measurements.

System layout from arXiv:2101.00071

23

experiments

Tasks

calibration
———<_ Procedures

instruments Drivers for experiments

- PulseSequence
circuit

HardwareCircuit

connection

Connection ParamikoSSH

qibolab

BasicPulse

puise / MultifrequencyPulse
_ FilePulse

Rectangular

pulses

Gaussian
PulseShape

SWIPHT

schedulers TaskScheduler

readout Tormography

QPU support using qibolab:

e Agnostic layout.

e Multiple experiments support.

e Plug & play for instruments.

e Tools for hardware control.

24

Qibo lab supported instruments

Lab User

1. Gates to pulses conversion
2. Pulse sequence definition
Qi bo circuit : HardwareCircuit 3. Pulse to experiment drivers conversion

4. Operation scheduling and execution

5. Results reconstruction

23

Qibo lab deployment

FPGA RFSoC

QPU
nnnn

Toom

IO

Lab Server

Qibo-Hardware backend
Circuit Compiler + pulse controller

26

Qibo control schematic layout

Qibo Layout with Hardware

— Abstractions Backends B
—» Circuit TensorFlow <———
——» Gates ; Numpy <——
Core Specialization—
—» Hamiltonians
Hardware

—
States Pulse sequence library

FPGA connection
Calibration procedures
Task scheduler

State reconstruction

Quantum algorithms
VQE Optimizers

QAOA AE Experiment
Abstraction

User 27

Supported instruments

e AWG:
e Tektronix (e.g. AWG5204,
AWGT70000A)
e AlazarTech boards (e.g. ATS9371) Development roadmap:
® QuickSyn e Qibo already provides a prototype
* Rigol (DC 5072) approach based on AWG-like
* - instruments.
o QBlox*

» We are working on production control

e FPGA boards: hardware based on FPGA boards.
e Xilinx Zynq UltraScale+ RFSoC*

e Intel Cyclone V*

* supported system under development

28

Qibo - Server-client communication

Remote access to QPU
— @
L1-&
[
-2

Il o

-—

Network

;._

Quantum chip Server Queue Clients Users

Goals:

Accept jobs from remote users (clients)
Schedule jobs in a server queue (server)
Run and retrieve results from QPU (server) 29

Client-server layout

Qibo Middleware

Classical hardware running
Qibo, and submitting jobs.

Data management between
Remote Server client and server.

Job scheduler that checks for
resources availability, submit
and retrieve results.

Job Scheduler

The real quantum hardware
Quantum Hardware that executes the job.

30

Client-server infrastructure layout

API client API server Lab servers
2 Job datab
ob database —
> e o
o —
o0 — / =
Browser Web server
o —] " \ =
. » |0 — o —
0 —
o —

Development of 2 modules:

e Client: translates circuits and algorithms into requests.

e Server: complete webserver and queue system for job submission.
31

Outlook

Qibo is currently a framework for research:

publicly available as an open-source code:

https://github.com/qiboteam/qibo
Designed with several abstraction layers.

For fast prototyping of quantum algorithms.

32

https://github.com/qiboteam/qibo

Qibo tutorials

We provide several tutorials for:

Application tutorials

yyyyyyyyyy

e Variational circuits
e Grover's algorithm

e Adiabatic evolution

e Quantum Singular Value Decomposer

Visit:
https://qibo.readthedocs.io/en/stable/code-examples/applications.html

83

https://qibo.readthedocs.io/en/stable/code-examples/applications.html

Thank you for your attention.

Rational for Variational Quantum Circuits

Rational:
Deliver variational quantum states — explore a large Hilbert space.

U(d) =Uy...U2Us Near optimal solution

—] U3
T a
— — Uy —

34

Rational for Variational Quantum Circuits

Rational:
Deliver variational quantum states — explore a large Hilbert space.

U(d) =Uy...U2Us Near optimal solution

] 2
o 1 .
— — Uy —

Idea:

Quantum Computer is a machine that generates variational states.

= Variational Quantum Computer! 9

Solovay-Kitaev Theorem

Let {U;} be a dense set of unitaries.

Define a circuit approximation to V:) i
Optimal solution

|Ug...UUp — V| <6

Scaling to best approximation

1
k ~ log® =
(’)(og 5) .

where ¢ < 4.

= The approximation is efficient and requires a finite number of gates.

85

Adiabatic evolution

Example for adiabatic quantum computation:

Lets consider the evolution Hamiltonian:
H(t)=(1—-s(t))Ho+ s(t)H,
where

e Hj is a Hamiltonian whose ground state is easy to prepare and is used as the
initial condition,

e H; is a Hamiltonian whose ground state is hard to prepare

e s(t) is a scheduling function.

According to the adiabatic theorem, for proper choice of s(¢) and total evolution time
T, the final state |¢)(T")) will approximate the ground state of the “hard” Hamiltonian
H,.

36

	Introduction
	Introducing Qibo
	Computational models in Qibo
	Quantum Circuits
	Variational Quantum Circuits
	Quantum Annealing
	Quantum hardware control
	Qibo - Server-client communication
	Outlook

