Introduction 00	Indices as topological QM 0000	Unifying indices	New indices from spindles	Conclusions 00

Novel exact results and new indices for supersymmetric theories in three dimensions

Based on arXiv 2006.06692 (with R. Panerai & K. Polydorou) and 220x.yyyy (with M. Inglese & D. Martelli)

Antonio Pittelli

Dipartimento di Matematica, Università di Torino & INFN, Sezione di Torino

TFI 2022, Venice

Antonio Pittelli

Dipartimento di Matematica, Università di Torino & INFN, Sezione di Torino

Introduction 00	Indices as topological QM 0000	Unifying indices	New indices from spindles	Conclusions

Outline

1 Introduction

- 2 Indices as topological QM
- 3 Unifying indices
- 4 New indices from spindles

5 Conclusions

Antonio Pittelli

Dipartimento di Matematica, Università di Torino & INFN, Sezione di Torino

< ∃ >

Introduction ●○	Indices as topological QM 0000	Unifying indices	New indices from spindles	Conclusions

What the index is

Trace formula

- Witten index of a (d + 1)-dimensional (superconformal) field theory in radial quantization, flavoured by Φ_i , with $[\Phi_i, \mathcal{H}] = 0$
- $|\psi\rangle$ with $\mathcal{H} \neq 0$ are Bose/Fermi pairs $\rightarrow (-)^F \rightarrow \partial_x \mathcal{I}_{d+1} = 0$
- φ_i can be tuned, e.g. $E = 2R + J \rightarrow$ Schur index

Path integral representation

•
$$\mathcal{I}_{d+1} = \widehat{Z}_{S^d \times S^1}$$
 with suitable background fields, e.g. $A^{(R)}$

• In 3d:
$$\int_{S^2} dA^{(R)} = 2\pi \mathfrak{c}$$
, e.g. $\mathfrak{c} = 0 \to (\text{gen})$ sc; $\mathfrak{c} = \pm 1 \to \text{twisted}$

Antonio Pittelli

Dipartimento di Matematica, Università di Torino & INFN, Sezione di Torino

Introduction ○●	Indices as topological QM 0000	Unifying indices	New indices from spindles	Conclusions

Why the index

Path integral representation

- \mathcal{I}_{d+1} for SU(N) gauge theory at large $N \to$ bh entropy¹
- Check non-perturbative dualities/ correspondences²
- S^1 -reduction³ of \mathcal{I}_{d+1} provides Z_{S^d}
- Factorization, e.g. holomorphic-blocks story⁴

¹Benini, Hristov, Zaffaroni, '16; Cabo-Bizet, Cassani, Martelli, Murthy, '18 ²Kapustin, Willett, '11

³Benini, Cremonesi, '12

⁴Beem, Dimofte, Pasquetti, '14

Antonio Pittelli

Dipartimento di Matematica, Università di Torino & INFN, Sezione di Torino

< □ > < 同 > < Ξ > <</p>

New indices from spindles

Conclusions

Schur index and holomorphic correlators

Antonio Pittelli

Dipartimento di Matematica, Università di Torino & INFN, Sezione di Torino

$\mathcal{N}=$ 4 matter theories on $S^2 imes S^1$

Setup

• Metric:
$$ds^2 = d\theta^2 + \sin^2 \theta^2 d\varphi^2 + \beta^2 dt^2$$

• Initial R-symmetry: $SU(2)_H \times SU(2)_C$

• R-sym bg fields:
$$A_H = -\frac{i\beta}{2}\sigma^3 dt$$
 and $A_C = 0$

• bg VM:
$$(A, \Phi_{\dot{a}\dot{b}}, D_{ab})$$

- dynamical HM: $\left(q^{a}, \widetilde{q}^{a}, \psi^{\dot{a}}, \widetilde{\psi}^{\dot{a}}, G^{a}, \widetilde{G}^{a}\right)$
- $\{\mathbb{Q}, \mathbb{S}\} \sim J_3 R_{\dot{1}\dot{2}}$ with $J_3 \sim \partial_{\varphi}$ leaving $S^1_{N,S}$ fixed
- BPS VM: A = a dt, $\Phi_{\dot{1}\dot{2}} = \sigma$. Set $z_{N,S} = a \mp i\beta\sigma$
- BPS HM ops: $q_{N,S} = q^1 \pm q^2$, same for $\widetilde{q}_{N,S}$
- SU(2)_C-neutral ops on S¹ and defects wrapping
 S² are BPS (e.g. Higgs-branch ops)

Antonio Pittelli

Dipartimento di Matematica, Università di Torino & INFN, Sezione di Torino

New indices from spindles

Conclusions

$\mathcal{N}=4$ index and topological correlators

One-dimensional theory and exact correlators

As for the three-sphere^a, 3d theory = topological quantum mechanics for local BPS ops:

$$\begin{split} &Z_{3d} = Z_{1d} = \int [\mathrm{d}\widetilde{q}_{N,S}] [\mathrm{d}q_{N,S}] e^{-S_{1d}}, \\ &\frac{S_{1d}}{2\pi} = \int_{S_N^1} \mathrm{d}t \widetilde{q}_N (\partial_t - \mathrm{i}z_N) q_N - \int_{S_S^1} \mathrm{d}t \widetilde{q}_S (\partial_t - \mathrm{i}z_S) q_S, \\ &\langle \widetilde{q}_{N,S}(t) q_{N,S}(0) \rangle = \mp \frac{\mathrm{sign}(t) - \mathrm{i}\cot\left(\pi z_{N,S}\right)}{4\pi} e^{-\mathrm{i}z_{N,S}t}. \end{split}$$

Defects wrapping S^2 or $S^1_{N,S}$ can be readily included.

^aDedushenko, Pufu, Yacoby, '16

Antonio Pittelli

Dipartimento di Matematica, Università di Torino & INFN, Sezione di Torino

New indices from spindles

Conclusions

A spiky index from accelerating black-holes

Spindles at the horizon

- The metrics of accelerating black-holes have conical singularities^a
- Conical singularities signal the presence of $\Sigma = \mathbb{WCP}^{1}_{[n_{-},n_{+}]}$, namely *spindles*
- Field theory dual: $\mathcal{N} = 2 \text{ QFT on } \Sigma \times S^1$ with $A^{(R)}$ such that $\int_{\Sigma} \mathrm{d}A^{(R)} = \frac{2\pi(n_- n_+)}{2n_- n_+}$

•
$$\int_{\Sigma} dA^{(R)} \neq \pi \chi \to \widehat{Z}_{\Sigma \times S^1} = \text{anti-twisted index}$$

^aFerrero, Gauntlett, Ipiña, Martelli, Sparks, '20

Antonio Pittelli

Dipartimento di Matematica, Università di Torino & INFN, Sezione di Torino

Geometry and bg fields on orbifolds admitting Q, \widetilde{Q}

Starting point

1
$$ds^2 = g_{\mu\nu}dx^{\mu}dx^{\nu} = f(x)^2dx^2 + C_{ij}(x)d\psi^i d\psi^j \in \mathbb{C}$$

2 $K = N_0(i\omega_0\partial_{\psi^1} + \partial_{\psi^2}) \in \mathbb{C}$ and $\mathcal{L}_K g_{\mu\nu} = 0$
3 $\exists Q, \widetilde{Q} : \left\{Q, \widetilde{Q}\right\} \sim K$, no need $\partial_{\psi^1}, \partial_{\psi^2}$ separately

Construct:

•
$$(k_0, P, \widetilde{P}) : k_0^2 = \iota_K K^{\flat}, \iota_P \widetilde{P}^{\flat} \neq 0, \, \mathrm{d}s^2 = (K^{\flat}/k_0)^2 - P^{\flat} \widetilde{P}^{\flat}$$

• $(A, H, V), \, \mathrm{e.g.}:$
 $V = \frac{1}{k_0^2} \Big(\mathrm{i}k_0 H - \iota_K \frac{*\mathrm{d}K^{\flat}}{2k_0^2} \Big) K^{\flat} + \frac{\mathrm{i}}{2} \Big(\widetilde{P}^{\flat} \mathcal{L}_P - P^{\flat} \mathcal{L}_{\widetilde{P}} \Big) \log k_0$

Antonio Pittelli

Dipartimento di Matematica, Università di Torino & INFN, Sezione di Torino

Image: A math a math

New indices from spindles

Conclusions

Supersymmetry on orbifolds admitting Q, Q

Killing spinor

$$\begin{split} \zeta &= e^{\frac{\mathrm{i}\alpha_1}{2}\psi^1 + \frac{\mathrm{i}\alpha_2}{2}\psi^2}(u_1, -u_2), \text{ with } u_{1,2} = \sqrt{k_0 \mp \mathrm{i}N_0\omega_0\sqrt{\frac{\det C}{C_{22}}}}\\ \text{satisfies the KSE: } (\nabla_\mu - \mathrm{i}A_\mu)\zeta &= -\frac{H}{2}\gamma_\mu\zeta - \mathrm{i}V_\mu\zeta - \frac{1}{2}\epsilon_{\mu\nu\rho}V^\nu\gamma^\rho\zeta \end{split}$$

Remarks

•
$$\widetilde{\zeta}$$
 satisfies the KSE with $(A, H, V)
ightarrow (-A, H, -V)$

After fixing $g_{\mu
u}$, twist/no-twist/ anti-twist are selected by ω_0

$$(\zeta, \widetilde{\zeta}) \to (Q, \widetilde{Q}) \to \delta = Q + \widetilde{Q} \to \delta^2 \sim K = \widetilde{\zeta} \gamma \zeta$$

Antonio Pittelli

Dipartimento di Matematica, Università di Torino & INFN, Sezione di Torino

Introduction	Indices as topological QM	Unifying indices	New indices from spindles	Conclus
00	0000	○○●		00

Localization and cohomology

Cohomological complex

Chiral multiplet: $(\phi, \psi, F) \in \mathcal{R}$. If $\psi \sim B\zeta + (C/k_0)\widetilde{\zeta}$, then

$$\delta \phi = C, \qquad \delta B = \Theta, \qquad \delta^2$$
$$L_K = \mathcal{L}_K - iq_R \Phi_R, \qquad \Phi_R = \iota_K [A_R, A_R]$$
$$\mathcal{G}_{\Phi_G} X = -i\Phi_G \circ_{\mathcal{R}} X, \qquad \Phi_R = \mu_R (A_R)$$

$$\delta^{2} = -2\mathrm{i}(L_{K} + \mathcal{G}_{\Phi_{G}}),$$

$$P_{R} = \iota_{K}[A - (V/2)] - \mathrm{i}k_{0}H,$$

$$\Phi_{G} = \iota_{K}A_{G} - \mathrm{i}k_{0}\sigma,$$

Partition function

$$Z = \sum_{\circ} \int_{\bullet} Z_{\text{classical}} \times \frac{\det_{\text{Ker}L_{P}} \left(L_{K} + \mathcal{G}_{\Phi_{G}} \right)}{\det_{\text{Ker}L_{\widetilde{P}}} \left(L_{K} + \mathcal{G}_{\Phi_{G}} \right)}$$

Antonio Pittelli

Dipartimento di Matematica, Università di Torino & INFN, Sezione di Torino

lı c	ntroduction	Indices as topological QM 0000	Unifying indices	New indices from spindles

Geometry on anti-twisted $\mathbb{Z} \times S^1$

Besse metric and frame

$$\mathrm{d}s^2 = f^2\mathrm{d}x^2 + \left(1-x^2\right) \left(\mathrm{d}\psi^1 - \mathrm{i}\Omega\mathrm{d}\psi^2\right)^2 + \beta^2 \left(\mathrm{d}\psi^2\right)^2$$
, with $\Omega \in \mathbb{C}$ and

$$\begin{split} \mathbf{e}^{1} &= -f \,\mathrm{d}x, \quad \mathbf{e}^{2} = \beta \sqrt{\frac{1 - x^{2}}{\beta^{2} - (1 - x^{2})\Omega^{2}}} \mathrm{d}\psi^{1}, \\ \mathbf{e}^{3} &= \sqrt{\beta^{2} - (1 - x^{2})\Omega^{2}} \left(-\frac{\mathrm{i}\Omega(1 - x^{2})\mathrm{d}\psi^{1}}{\beta^{2} - (1 - x^{2})\Omega^{2}} + \mathrm{d}\psi^{2} \right), \\ \lim_{x \to \pm 1} f \to \frac{n_{\mp}}{\sqrt{2(1 \mp x)}}, \quad \mathcal{K} = \mathcal{N}_{0} \big[\mathrm{i}\omega_{0}\partial_{\psi^{1}} + \partial_{\psi^{2}}\big], \quad \omega_{0} = \Omega - \beta \\ \mathcal{P}^{\flat} &= \mathrm{i}e^{\mathrm{i}\alpha_{i}\psi^{i}} \left\{ f \,\mathrm{d}x + \frac{\sqrt{1 - x^{2}}}{x} \big[\mathrm{i}\mathrm{d}\psi^{1} + \omega_{0}\mathrm{d}\psi^{2}\big] \right\}, \end{split}$$

Antonio Pittelli

Dipartimento di Matematica, Università di Torino & INFN, Sezione di Torino

イロト イヨト イヨト イヨ

Antonio Pittelli

Supersymmetry on anti-twisted $\mathbb{Z} \times S^1$

Killing spinor

$$\zeta=e^{rac{\mathrm{i}lpha_i\psi^i}{2}}(u_1,-u_2)$$
 satisfies the KSE with

$$\begin{split} \psi_{1,2} &= \sqrt{\frac{\beta N_0}{2}} \sqrt{x \mp i\omega_0} \sqrt{\frac{1-x^2}{\beta^2 - (1-x^2)\Omega^2}} \\ A &= \frac{3}{2}V + \frac{\mathrm{d}\psi^1 - \mathrm{i}(\beta + \Omega)\mathrm{d}\psi^2}{2f(x)\sqrt{1-x^2}} + \frac{\alpha_i}{2}\mathrm{d}\psi^i, \\ &\int_{\mathbb{T}} \frac{\mathrm{d}A}{2\pi} = \frac{n_- - n_+}{2n_- n_+} \to \text{anti-twist}, \end{split}$$

New indices from spindles

Conclusions

Partition function on anti-twisted $\mathbb{Z} \times S^1$

The anti-twisted index

Finally, given
$$\mathfrak{r} = r_{\text{eff}} = r + \mathfrak{n} + \mathfrak{m}(n_- + n_+)/(n_- - n_+)$$
,

$$\begin{split} Z_{\mathbb{Z}\times S^{1}}^{\mathrm{chi}} &= e^{-\mathrm{i}\pi\Psi(w,\mathfrak{m},\mathfrak{n},\omega_{0})} \frac{\left(q^{1+|q_{m}\mathfrak{r}|-\mathfrak{m}q_{m}}e^{-2\pi\mathrm{i}(w+\gamma)};q\right)}{\left(q^{1+|q_{m}\mathfrak{r}|-\mathfrak{m}q_{m}}e^{2\pi\mathrm{i}(w-\gamma)};q\right)},\\ q &= e^{-2\pi\omega_{0}}, \quad \mathfrak{m},\mathfrak{n}\in\mathbb{Z}, \quad \gamma = \frac{\mathrm{i}\varphi}{2\pi} = \frac{n}{2} + \frac{\mathrm{i}\chi\omega_{0}}{4}, \quad n\in\mathbb{Z},\\ q_{m} &= \frac{n_{-}-n_{+}}{4n_{-}n_{+}}, \quad w = (r-1)\frac{\mathrm{i}\varphi}{2\pi} - \frac{u}{2\pi}, \quad u\in\mathbb{C}, \end{split}$$

Antonio Pittelli

Dipartimento di Matematica, Università di Torino & INFN, Sezione di Torino

イロト イヨト イヨト イヨト

Introduction 00	Indices as topological QM 0000	Unifying indices	New indices from spindles	Conclusions ●0

Discussion

Results

- 3d SUSY index as a topological QM on $S^1 \cup S^1$
- exact correlators for BPS operators on $S^1 \subset S^2 imes S^1$
- a unique ζ for a large class of 3d orbifolds
- new SUSY index from exact partition functions on spindles

Outlook

- anti-twisted index as a topological QM on $S^1 \cup S^1$
- black-hole entropy from ABJM on \mathbb{Z} at large N
- localization of 5d gauge theories compactified on spindles

Antonio Pittelli

Dipartimento di Matematica, Università di Torino & INFN, Sezione di Torino

イロト イポト イヨト イヨト

Introduction 00	Indices as topological QM 0000	Unifying indices	New indices from spindles	Conclusions
The end?	,			

つづく ...

Antonio Pittelli

Dipartimento di Matematica, Università di Torino & INFN, Sezione di Torino

・ロト ・回 ト ・ヨト ・ヨト

ъ.