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Introduction

� Global symmetry (GS) is an intrinsic universal characteristic

that classifies and constrains quantum field theories (QFTs)

and that can be matched across all different descriptions and

dualities.

� Theories of quantum gravity are believed to have no global

symmetries, so that many different aspects may be explained

quite generally in terms of the way this conjecture is realized

(Harlow, Ooguri,’18, Heidenreich et al., ’20).

� The description of GS in terms of topological operators leads

naturally to such generalizations as higher-form GS and

non-invertible GS. Many aspects of QFTs can be described in

terms of the “algebra” of symmetry defects without relying on

model-dependent properties.
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Higher-form symmetries (HS) (Gaiotto et al., ’14)

� A p-form GS is defined by topological operators

Ug (M
(d−p−1)) labeled by the elements g fo the group G , with

the fusion algebra

Ug (M
(d−p−1))Ug ′(M(d−p−1)) = Ugg ′(M(d−p−1)) , (1)

and the Ward identities

Ug (S
d−p−1)V (C (p)) = g(V )V (Cp) , (2)

where g(V ) is a representation of g and the sphere Sd−p−1

links once with the p-dimensional support Cp of the charged

operator V (Cp).

� When G = U(1) and a Noether current Jp+1 exists, one can

write explicitly

Ug=e iα(M
(d−p−1)) = exp

(
iα

∫
M(d−p−1)

⋆Jp+1

)
(3)
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U(1) gauge theory in 4d

� For pure Maxwell theory G = U(1) in 4d

UE
g=e iα(M

2) = exp

(
iα

g2

∫
M2

⋆F2

)
, UM

g=e iα(M
2) = exp

(
iα

g2

∫
M2

F2

)
(4)

� Given a Wilson loop labeled by an electric charge n ∈ Z if S2

surrounds γ(1),

exp

(
iα

g2

∫
M2

⋆F2

)
exp

(
in

∮
γ(1)

A1

)
= exp(inα) exp

(
in

∮
γ(1)

A1

)
. (5)

� HS can be coupled to background fields. E.g.

i

(2π)
B2 ∧ F2 +

in

(2π)
B2 ∧ da, (6)

imposing F2 + nda = 0 and making B2 a Zn 2-form gauge

field.
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The orbifold construction in 2d CFT

Given a finite group G formed by symmetry defects g , the

correlators of the G -orbifold are described as correlators of the

unorbifolded model with a sufficiently fine network of defect lines

Q =
∑

g∈G g with topological two-to-one junctions

φ =
∑

g ,h∈H φg ,h. For the torus partition function, e.g.

Zorb = 1. (7)

Independence on the choice of defect network implies the

associator must give rise to 3-cocycle belonging to the class [1] in

H3(G ,U(1)) (’t Hooft anomaly). Different choices of φg ,h are

related by 2-cocycles classified by H2(G ,U(1)) (discrete torsion).
1Courtesy of Jürg Fröhlich et al.,’09 5/18



Orbifold in QFT

Given a d-spacetime-dimensional QFT C and a finite group G

acting on C by global symmetries, the orbifold construction is a

general method to build a new theory C/G by “gauging” G

� Orbifolding is possible only if the ‘t Hooft anomaly

ω ∈ Hd+1(BG ,U(1)) is trivial, i.e. if C can be coupled to a

defect network with consistent junctions.

� Given a foliation Σ× Rt and the Hilbert space H of states on

space-like Σ, gauging involves projecting on the untwisted

sector HG of G -fixed points in H and summing over new

twisted sectors Hf , f ∈ G , of states defined up to the action

of non-trivial f .

� For a given group G , there might be different and inequivalent

ways of integrating over flat connections, classified by

Hd(G ,U(1)).
6/18



Orbifold in string theory

� Orbifolds in string theory are realized by carrying out either a

QFT orbifold of the worlsheet 2d CFT w.r.t. a global

symmetry or a geometric orbifold of the string backgrounds

w.r.t. some finite group of isometries.

� Both methods depend on our choice of the fundamental string

over other dynamical objects that are present in string theory

and therefore it is highly non-trivial to match orbifolds

between different duality frames for non-perturbative dualities.

� Spacetime quantum gravity, with asymptotically flat

geometry, is characterized by a gauge group H (including

higher-group symmetries). In particular, the global worldsheet

symmetries are gauged preventing to perform an orbifold as in

QFT. The corresponding asymptotic gauge symmetries are

however broken by charged states so that they are always

present independently of the particular description.
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Spacetime orbifold

Spacetime orbifold w.r.t. G should correspond to the worlsheet

orbifold w.r.t. the global G worldsheet symmetry.

� We project out all states and operators in a non trivial

representation of G , including the ones localized on such

extended objects as D-branes, NS5-branes, etc.

� We gauge the global 1-symmetry associated to the Wilson

lines in non-trivial representations of G that became

non-endable in the previous step and that are projected out .

We introduce gauge fields configurations that close only up to

gauge transformations.

� For each dynamical object (fundamental string, D-brane,

NS-brane) we allow the worldvolume fields to have non-trivial

monodromy in G around any non-trivial cycle wrapped and we

introduce the codimension 2 operators that create such twist

vortices.
8/18



Higher-form gauge fields

� The information about a p-form gauge field on a manifold X

is encoded in Ǎ = (N,A,F), where F ∈ Ωp+1
closed(X ),

A : Cp(X ) → R is a p-cochain, mapping a p-chain

M ∈ Cp(X ) to
∫
M A, and with a coboundary operator δ such

that, if δA : Cp+1(X ) → R,
∫
N δA =

∫
∂N A for any

p + 1-chain N, and N is an integral p + 1-cochain

N : Cp+1(X ) → Z, such that δA = F− N .

� Gauge transformations are given by

(N,A,F) → (N + δn,A− n + δa,F) (8)

where a : Cp−1 → R is any p − 1-cochain and n : Cp → Z is
any integral p-cochain.

� Flat gauge fields Ǎ with F = 0 are in one-to-one

correspondence with Hp(X ,R/Z). They can be realized as

networks of Ug defects stretched in a spatial slice with

topological junctions between them.
9/18



Type II superstring compactified on S1

If z ∼ z + 2πℓzn, the NS-NS sector includes a 2-form gauge field

B2, the momentum vector A and the winding vector B, whose

dynamics is constrained by the Nicolai-Townsend gauge

transformations

B2 7→ B2 +
1

2
λ ∧ H2 +

1

2
σ ∧ F2when

A 7→ A+ dλ,

B 7→ B + dσ
(9)

If

H̃3 = dB2 −
1

2
A ∧ H2 −

1

2
B ∧ F2 + (localized) . (10)

we can consider the Hodge dual ǍB̃5
= (NB̃5

,AB̃5
,FB̃5

),

FB̃5
= e−2ϕ ∗ H̃3∫

N

NA ∈ 2πlzZ,
∫
N

NB1 ∈
2π

lz
Z,

∫
N

NB̃5
∈ 2πZ

10/18



Higher-group global symmetry

� The higher-group global symmetry is identified by the currents

∗J6 = i2πℓze
2ϕ ∗ FB̃5

∗J3 = i
2πFB̃5

∗J2,e = i (2πℓz) ℓzk
2e−2ϕ ∗ F2 ∗J7,m = i

2πℓz
F2

∗J2,w = i (2πℓz)
1

ℓz
k−2e−2ϕ ∗ H2 ∗J7,mw = iℓz

2πH2.

� In absence of sources

d ∗ J6 = −i2πℓzF2 ∧ H2 d ∗ J3 = 0

d ∗ J2,e = i (2πℓz) ℓzH2 ∧ FB̃5
d ∗ J7,m = 0

d ∗ J2,w = i (2πℓz)
1

ℓz
F2 ∧ FB̃5

d ∗ J7,mw = 0.

� Chern-Simons terms imply the Maxwell currents d ∗ J6,
d ∗ J2,e and d ∗ J2,w are gauge invariant and conserved, but

not localized nor quantized.

11/18
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Definition of topological operators

� The Page currents

d (∗J6 + i2πℓzAB1⋆A1) = −i2πℓzNB1 ∪ NA1 ,

d
(
∗J2,e − i (2πℓz) AB1⋆B̃5

)
= i (2πℓz) NB1 ∪ NB̃5

,

d

(
∗J2,w − i (2πℓz)

1

ℓz
AA1⋆B̃5

)
= i (2πℓz)

1

ℓz
NA1 ∪ NB̃5

,

where for two p,q-forms ǍA1,A2 = (NA1,A2,AA1,A2,FA1,A2),

A = AA1 ∪ NA2 + (−1)p+1FA1 ∪ AA2 + Q(FA1 ,FA2) , (11)

are quantized, conserved, well-defined, and invariant under
the gauge transformations A → A + δa.

� They are not invariant under the gauge transformation

N → N+ δn, A → A+ n, shifting them by integers so that the

corresponding symmetries are completely broken.

� The operator e
2πik
n

∫
M(7) (e

−2ϕk2∗F2+nA) defines a Zn global

symmetry.
12/18



Introducing sources

� According to the “Completeness Hypothesis” quantum gravity

theories should admit states of all possible charges. This is

related to the absence of GS, which should therefore either be

gauged or broken.

� We introduce p-form currents that are localized on the

9− p-dimensional worldvolumes of extended objects.

� By consistency Chern-Simons terms require extended objects

carry worldvolume degrees of freedom that appear in the

gauge invariant combination ∇XY = dY + X , where X is a

p-form potential and Y is a charged p − 1 form field on the

worldvolume

13/18



Equations of motion

d ∗ J3 = jF7 , (12)

d ∗ J7,m = jKK3 , (13)

d ∗ J7,mw = jNS53 , (14)

d (∗J6 + i2πℓzAB1⋆A1) = −i2πℓzNB1 ∪ NA1 + jNS54

+(2π)2∇B1σ
KK ∧ jKK3 + (2π)2∇Az

NS5 ∧ jNS53 , (15)

d
(
∗J2,e − i (2πℓz) AB1⋆B̃5

)
= i (2πℓz) NB1 ∪ NB̃5

+ jm8

−(2π)2∇B1Z
∗ ∧ jF7 − (2π)2(∇B̃5

z∗NS5) ∧ jNS53 (16)

d

(
∗J2,w − i (2πℓz)

1

ℓz
AA1⋆B̃5

)
= i (2πℓz)

1

ℓz
NA1 ∪ NB̃5

+ jF8

−(2π)2∇AZ ∧ jF7 − (2π)2∇B̃5
σ∗KK ∧ jKK3 , (17)

where ⋆dz = dz ′ on the respective worldvolume.
14/18



Orbifold by half-period shift

� We project on configurations of the sources that have even

magnetic charges for the gauge field B1.

� eπi
∫
M(2) H2 implements now a Z2 1-form global symmetry that

we gauge, so imposing B1 = 2B1. Notice this can be seen as

the consequence of the gauging of the global quantum

symmetry on the worldsheet.

� We can now project on configurations of the sources such that

the right-hand side of (22) is even.

� e
πi

∫
M(7) (e

−2ϕk2∗F2+2AB1⋆B̃5
)
implements a Z2 global symmetry,

whose gauging implies NA1 is quantized in half-integers.

� We have new Wilson lines carrying odd units of B1 electric

charge and ’t Hooft lines corresponding KK monopoles with

half-integral unit of magnetic charge for A1.

� We break the global symmetries by introducing states so that

jF8 and jKK3 are quantized in half-integers.
15/18



Orbifolded equations of motion

Renaming B1 by B1,

d ∗ J3 = jF7 , (18)

d ∗ J7,m =
1

2
jKK3 , (19)

d ∗ J7,mw = 2jNS53 , (20)

d
(
∗J6 + i2πℓzA2B1⋆

1
2
A1

)
= −i2πℓzN2B1 ∪ N 1

2
A1

+ jNS54

+(2π)2∇2B1σ
KK ∧ 1

2
jKK3 + (2π)2∇ 1

2
Az

NS5 ∧ 2jNS53 ,(21)

d
(
∗J2,e − i (2πℓz) A2B1⋆B̃5

)
= i (2πℓz) N2B1 ∪ NB̃5

+ 2jm8

−(2π)2∇2B1Z
∗ ∧ jF7 − (2π)2(∇B̃5

z∗NS5) ∧ 2jNS53 (22)

d

(
∗J2,w − i (2πℓz)

1

ℓz
A 1

2
A1⋆B̃5

)
= i (2πℓz)

1

ℓz
N 1

2
A1

∪ NB̃5
+

1

2
jF8

−(2π)2∇ 1
2
AZ ∧ jF7 − (2π)2∇B̃5

σ∗KK ∧ 1

2
jKK3 , (23)16/18



Conclusions

� The orbifold procedure for quantum gravity we have presented

is the direct counterpart of the worldsheet orbifold.

� Whereas for convenience we have used some of the dynamical

details of the model, the procedure is expected to be

independent of them and rely only on the gauge group

structure of quantum gravity. It would be therefore useful to

express it solely in terms of topological operators.

� One of the main motivations for the present work is to

understand the dependence (or independence) of the orbifold

procedure on the duality frame. Even if we have chosen one,

we have argued our procedure is largely independent of it.

17/18



Conclusions

� This is at odds with known examples where “orbifolds do not

commute with dualities”. E.g. the orbifold of 10d type IIB

string theory for worldsheet parity is type I string theory,

whereas the orbifold of IIB by the S-dual (−1)FL is type IIA.

� Spacetime orbifold could either clarify the obstructions in such

cases or suggest different ways to perform the orbifold that

are invisible from the worldsheet point of view.

THANK YOU!
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