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Introduction Gravitational Phenomenology

Lessons from history

Thomson’s ”plum-pudding” atomic model was
carefully constructed and tested theoretically for
inconsistencies.

E. Rutherford set up his famous experiment of
scattering of α particles NOT with the aim of
disproving the model, BUT just of testing its accuracy.

Black holes can be regarded as the ”elementary
particles” of gravity (simplest and indivisible in GR).

Could BHs hold the same surprises that the electron
and the hydrogen atom did when they started to be
experimentally probed?

[Cardoso,Pani:2017]
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Introduction Gravitational Phenomenology

Gravitational Phenomenology

In the last few years, gravitational waves detections and black hole imaging have
opened the doors of gravitational phenomenology. [Mayerson:2020]

Finally, we can fully scientifically investigate whether real astrophysical black holes show
deviations from general relativity (GR), such as horizon scale structure.
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Introduction On quasinormal modes

Colliding BHs and quasinormal modes

A black hole collision can be
divided in 3 phases: inspiral, merger
and ringdown.

The quasinormal modes (QNMs) are responsible for the damped oscillations
appearing, for example, in the ringdown phase of two colliding BH and have a direct
connection to gravitational waves observations.
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Introduction On quasinormal modes

Alternative models of BHs

GR BHs present fundamental theoretical problems
(e.g. information paradox).

Also to solve such problems, theoretical models of
Exotic Compact Objects (ECOs) in alternative
theories of gravity have been developed. They have
horizon scale structure.

For subtype of ECOs, called Clean Photosphere
Objects (ClePhOs), the later stage ringdown signal
shows a peculiar train of echoes, with significant
deviations from GR.

An example of ClePhoS are fuzzballs in String
Theory, with neither horizon nor central singularity
and which may solve also the information paradox.

Figure: [Cardoso,Pani:2017]

Figure: Cr. Quanta Magazine
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From (N = 2) gauge to gravity and back

From (N = 2) gauge to gravity and back
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From (N = 2) gauge to gravity and back Introduction to Seiberg-Witten theory

Classical Seiberg-Witten curve and gauge periods

The classical Seiberg-Witten (SW) curve and SW differential are defined as

y2
SW = x3 + c2x

2 + c1x + c0

∂λ

∂u
=

√
2

8π

2u − (4− Nf )x + C0

ySW

(1)

Define the classical SW periods by integrating over the cycles A,B of the SW curve

a(0)(u,m,Λ) =

∮
A
λ(x , u,m,Λ) d x ,

a
(0)
D (u,m,Λ) =

∮
B
λ(x , u,m,Λ) d x .

(2)

From them one can compute the SW prepotential F (0)(u,m,Λ).

Daniele Gregori (University of Bologna, INFN) Integrability for exact results on N = 2 SUSY & BHs TFI 2022, Venice, Jun 15th 2022 10 / 51



From (N = 2) gauge to gravity and back Introduction to Seiberg-Witten theory

Quantum Seiberg-Witten curve and gauge periods from resummation

To compute instanton contributions spacetime is deformed by two complex parameters
ε1, ε2 into the Ω-background.

Interesting for the connection to gravity is the Nekrasov-Shatashvili limit
ε2 → 0, ε1 = } 6= 0

− }2 d2

dy2
ψ(y) +

[
Λ2

1

4
(e2y + e−y ) + Λ1mey + u

]
ψ(y) = 0 , (3)

(here for SU(2) Nf = 2 theory)
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From (N = 2) gauge to gravity and back Introduction to Seiberg-Witten theory

Quantum SW periods I

We can define quantum exact periods by exact integrals of P(y) = −i d
dy lnψ(y) as

sums over residues at the poles which as }→ 0 reduce to the classical cycles (branch
cuts). (

a(}, u,m,Λ)
aD(}, u,m,Λ)

)
.

=

∮
A,B
P(y , }, u,m,Λ) dy = 2πi

∑
n

ResP(y)

∣∣∣∣
yA,B
n

(4)
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From (N = 2) gauge to gravity and back Introduction to Seiberg-Witten theory

Quantum SW periods II

Alternatively, one can define possibly different quantum periods by the
Nekrasov-Shatashvili prepotential F(a, },m,Λ)

AD(u, },m,Λ) = ∂aF(u, },m,Λ)

∣∣∣∣
a=a(},u,m,Λ)

. (5)

u = a2 − Λ

4− Nf

∂Finst(a; },m)

∂Λ
. (6)

In practice F is computed by combinatorial calculus on Young Tableaux of the gauge
group representation.
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From (N = 2) gauge to gravity and back The new application to black holes

A surprising application

In the last two years, a surprising connection between N = 2 supersymmetric (SUSY)
SU(2) gauge theories (Nekrasov-Shatashvili deformed) and black holes (BHs)
perturbation theory has emerged [arXiv:2006.06111, 2105.04245, 2105.04483,
arXiv:2109.09804].

G. Aminov, A. Grassi and Y. Hatsuda first found that quantization conditions on the
gauge periods a,AD allow to compute the (QNMs) ωn spectrum of black holes from
gauge theory methods.

AD(}, u,m,Λ) = 2π

(
n +

1

2

)
, n = 0, 1, 2, .... (7)
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From (N = 2) gauge to gravity and back The new application to black holes

A fruitful new field

The importance of this result is manifold.

1 It constitutes a novel analytic characterization of QNMs, for which previously very few
were known [arXiv:2006.06111].

2 In the increasingly growing outflow of research on this topic, it has already allowed to find
new results for the BHs theory, such as:

1 an isospectral simpler equation to the perturbation ODE [arXiv:2007.07906];
2 improved theoretical proofs of BHs stability [arXiv:2105.13329];
3 more accurate computations of observable quantities such as Love numbers, describing

tidal deformations [arXiv:2105.04483];
4 an simpler interpretation of Chandrasekhar transformation as exchange of gauge mass

parameters [arXiv:2111.05857];
5 precise determination of the conditions of invariance under (Couch-Torrence)

transformations which exchange inner horizon and null infinity [arXiv:2203.14900].

3 It constitutes an unexpected application of Supersymmetry, which was originally
thought to describe elementary particles, but has not yet been found by experimentalists.
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Integrability for N = 2 gauge theory

Integrability for N = 2 gauge theory
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Integrability for N = 2 gauge theory The ODE/IM correspondence

ODE/IM correspondence
In this classic approach to integrability [arXiv:9812211,9812247,9906219], the Q
function is typically the wronskian of the regular solutions at different singular points

Q = W [ψ+, ψ−] ψ±(y)→ 0 y → ±∞ (8)

of some ODE, like (for self-dual Liouville IM or SU(2) Nf = 0 gauge theory)
[arXiv:1908.08030]:

− d2

dy2
ψ +

[
e2θ(ey + e−y ) + P2

]
ψ = 0 . (9)

This innovates ODE/IM correspondence itself because such ODEs have 2 irregular
singularities rather than just 1 as usual. One can derive also T ,Y functions as well as
the functional and integral equations they satisfy.

ODE/IM is an elegant approach to integrability which allows to apply it to very
different physical theories!
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Integrability for N = 2 gauge theory A new gauge-integrability correspondence

Basic gauge-integrability identifications

Using ODE/IM correspondence, we connected the basic integrability functions - the
Baxter’s Q, T and Y functions - to the gauge exact quantum periods a, aD (from which
the prepotential can be obtained). We proved relations like

Q(θ,P) = exp 2πiaD(}, u,Λ0)

T (θ,P) = 2 cos 2πa(}, u,Λ0)
(10)

under the parameters correspondence

}
Λ0

=
ε1

Λ0
= e−θ

u

Λ2
0

=
1

2
P2e−2θ (11)

These for the self-dual Liouville IM and SU(2) Nf = 0 gauge theory [arXiv:1908.08030]
but also similar ones for the Perturbed Hairpin IM and SU(2) Nf = 1, 2
[Fioravanti,Gregori,Shu-to appear] and SU(3) Nf = 0 gauge theories
[arXiv:1909.11100].
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Integrability for N = 2 gauge theory A new gauge-integrability correspondence

New results for both gauge theory and integrability

This fundamental identification allowed us to find several new interesting results for
both sides of this new kind of Integrability/Gauge correspondence, for instance:

1 an exact non linear integral equation (Thermodynamic Bethe Ansatz, TBA) for the
gauge (dual) periods;

2 an interpretation of the integrability functional relations as new exact R-symmetry
relations for the periods;

3 new formulas for the local integrals of motion in terms of gauge periods.

For instance, the Baxter’s TQ relation

T (θ, u) =
Q(θ − iπ/2,−u) + Q(θ + iπ/2,−u)

Q(θ)
(12)

turns out to be a new exact R-symmetry relation for the periods, reducing to the known

asymptotic ones in the limit θ →∞ (for the gauge periods expansion modes a(n), a
(n)
D )

a
(n)
D (−u) = i(−1)n

[
−sgn(Im u)a

(n)
D (u) + a(n)(u)

]
(13)
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Integrability for black holes

Integrability for black holes
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Integrability for black holes Mathematical definition of quasinormal modes

Mathematical definition of quasinormal modes

Perturbations of the BH metric or fields turns out to be solutions Φ of some PDEs of
the form {

+
∂2

∂t2
− ∂2

∂x2
+ U(x)

}
Φ(t, x) = 0 , (14)

(with coordinate x such that the BH horizon is put at x → −∞ and spacetime infinity at
x → +∞)
By ordinary DE techniques (Laplace tr. → non-hom. ODE →hom. ODE) we can express
the perturbation φ as an expansion over some frequencies ωn

Φ(t, x) =
∑
n

e iωntRes

(
1

W (s)

)∣∣∣∣∣
ωn

∫ ∞
−∞

Ψ−(ωn, x<)Ψ+(ωn, x>)I(ωn, x
′) dx ′ . (15)

ωn are the quasinormal modes (QNMs) and we see that they are defined as the zeros
of wronskian of the fundamental regular solutions at x → ±∞ (20):

W [Ψ+,Ψ−](ωn) = 0 , Ψ±(x)→ 0 x → ±∞ . (16)
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Integrability for black holes Mathematical definition of quasinormal modes

Details
If we take the Laplace transform of Φ

Ψ̂(s, x) =

∫ ∞
0

e−stΦ(t, x) dt , (17){
−
∂2

∂x2
+ U(x) + s2

}
Ψ̂(s, x) = −I(s, x) , I(s, x) = −sΨ(t, x)

∣∣
t=0
−
∂Ψ(t, x)

∂t

∣∣
t=0

. (18)

The corresponding homogeneous equation is exactly the ODE we are going to study in the next sections{
−
∂2

∂x2
+ U(x) + s2

}
Ψ(s, x) = 0 . (19)

Its solutions bounded at x → ±∞, for Re s > 0, are

Ψ+(s, x) ∼ e−sx , x → +∞ Ψ−(s, x) ∼ esx , x → −∞ . (20)

The solution of the homogenous equation is then found to be given by the Green function G as

Ψ̂(s, x) =

∫ ∞
−∞

G(s, x , x ′)I(s, x ′)dx ′ , G(s, x , x ′) =
1

W [Ψ−,Ψ+]
Ψ−(s, x<)Ψ+(s, x>) , (21)

with x< = min(x ′, x), x< = max(x ′, x).

Then taking the antiplace transform of Ψ̂ and setting s = iω we get the original perturbation as

Φ(t, x) =
1

2πi

∫ ε+i∞

ε−i∞
estΨ̂(s, x) ds =

∑
n

e iωntRes

(
1

W (s)

)∣∣∣∣∣
ωn

∫ ∞
−∞

Ψ−(ωn, x<)Ψ+(ωn, x>)I(ωn, x
′) dx ′ . (22)
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Integrability for black holes A quantum integrable model for black holes

ODE for the perturbation of generalized RN BHs
Line element for intersection of four stacks of D3-branes in type IIB supergravity:

ds2 = −f (r)dt2 + f (r)−1[dr2 + r2(dθ2 + sin2 θdφ2)] , (23)

with

f (r) =
4∏

i=1

(
1 +
Qi

r

)− 1
2

. (24)

If the charges Qi = Q = M are all equal, it leads to an extremal Reissner Nordström
(charged) BH with f (r) = 1− 2M

r + Q2

r2 .

The ODE for the scalar perturbation is

d2φ

dr2
+

{
−

(l + 1
2 )2 − 1

4

r2
+
ω2

r4

[
Σ4 + Σ3r + Σ2r

2 + Σ1r
3 + r4

]}
φ = 0 (25)

where we defined Σk =
∑4

i1<...<ik
Qi1 · · · Qik .
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Integrability for black holes A quantum integrable model for black holes

ODE for generalized Perturbed Hairpin Integrable Model

Changing variables as

r = 4
√

Σ4e
y , ω 4

√
Σ4 = −ieθ , (26)

Σ1
4
√

Σ4
= 2M1e

−θ ,
Σ3

4

√
Σ3

4

= 2M2e
−θ , P2 = (l +

1

2
)2 − ω2Σ2 . (27)

the ODE takes the form

− d2

dy2
ψ +

[
e2θ(e2y + e−2y ) + 2eθ(M1e

y + M2e
−y ) + P2

]
ψ = 0 . (28)

In this form, this ODE is a generalization of the one for the Perturbed Hairpin Integrable
Model:
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Integrability for black holes The ODE/IM procedure

Asymptotic solutions and discrete symmetries

The regular solutions of (28) at y → ±∞ (j = 1, 2) have boundary conditions

ψ−,0(y) ' 2−
1
2
−M2e−( 1

2
+M2)θ+( 1

2
+M2)ye−e

θ−y
, Re y → −∞ .

ψ+,0(y) ' 2−
1
2
−M1e−( 1

2
+M1)θ−( 1

2
+M1)ye−e

θ+y
, Re y → +∞ .

(29)

Equation (28) enjoys the discrete symmetries

Ω± : θ → θ + iπ/2 , y → y ± iπ/2 , M1 → ∓M1 , M2 → ±M2 , (30)

One can define other independent solutions as

ψ−,k = Ωk
−ψ−,0 , ψ+,k = Ωk

+ψ+,0 . (31)

We also have the invariance properties

Ωk
+ψ−,0 = ψ−,0 , Ωk

+ψ+,0 = ψ+,0 . (32)
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Integrability for black holes The ODE/IM procedure

Baxter’s Q function and quasinormal modes

The Baxter’s Q function is defined precisely as the wronskian of the regular
solutions

Q+,+(θ) = W [ψ+,0, ψ−,0] . (33)

(We will use the notation Q±,± = Q(θ,P,±M1,±M2), Q±,∓ = Q(θ,P,±M1,∓M2)).

Crucially, the QNMs condition (16) translates into

Q(θn) = 0 , (34)

namely the zeros of the Baxter’s Q function which are called Bethe roots.
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Integrability for black holes The ODE/IM procedure

Central connection relation as QQ system

The solutions are normalised such that their wronskians are
W [ψ−,k+1, ψ−,k ] = −i exp{(−1)k iπM2} , W [ψ+,k+1, ψ+,k ] = i exp{(−1)k iπM1}.
By the properties of wronskians W [ψ±,1, ψ±,1] = W [ψ±,0, ψ±,0] = 0, we can write the
linear (central) connection relations as

ie iπM1ψ−,0 = Q−,+(θ + iπ/2)ψ+,0 − Q+,+(θ)ψ+,1

ie iπM1ψ−,1 = Q−,−(θ + iπ)ψ+,0 − Q+,−(θ + iπ/2)ψ+,1

(35)

Taking their wronskian we get the QQ system (quantum wronskian)

Q+,−(θ +
iπ

2
)Q−,+(θ − iπ

2
) = e−iπ(M1−M2) + Q−,−(θ)Q+,+(θ) . (36)
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Integrability for black holes The ODE/IM procedure

Q function as non-compact integral

From the central connection relation (35) we get an integral formula for Q

Q+,+(θ) = −ie iπM1 lim
y→+∞

ψ−,0(y)

ψ+,1(y)
(37)

=

∫ ∞
−∞

dy

[√
2 cosh(2y)Π(y)− 2eθ cosh y −

(
M1

1 + e−y/2
+

M2

1 + ey/2

)]
+

(
θ +

1

2
ln 2

)
(M1 −M2)

(38)

The integrand Π(y) = 1√
2 cosh(2y)

d
dy ln( 4

√
−2 cosh(2y)ψ(y)) satisfies the Riccati

equation equivalent to the 2° order linear ODE for ψ(y)

Π(y)2 +
1√

2 cosh(2y)

d

dy
Π(y)

= e2θ + eθsech(2y)
(
M1e

y + M2e
−y)+

1

2
sech(2y)

[
P2 + sech(2y)− 5

4
tanh2(2y)

] (39)
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Integrability for black holes The ODE/IM procedure

Y function and quasinormal modes

One can define a Y function as

Y+,+(θ) = e iπ(M1−M2)Q+,+(θ)Q−,−(θ) (40)

From the QQ system it follows the Y system as

Y+,−(θ +
iπ

2
)Y−,+(θ − iπ

2
) = [1 + Y+,+(θ)][1 + Y−,−(θ)] . (41)

Eventually, the QQ system written as

e iπ(M1+M2)Q+,+(θ +
iπ

2
)Q−,−(θ − iπ

2
) = 1 + Y+,−(θ) . (42)

characterizes the QNMs with other quantizations conditions

Y+,−(θn − iπ/2) = −1 Y−,+(θn + iπ/2) = −1 (43)
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Integrability for black holes The ODE/IM procedure

Thermodynamic Bethe Ansatz

The Y system can be inverted in the Thermodynamic Bethe Ansatz (TBA) for
ε±,±(θ) = − lnY±,±(θ):

ε±,±(θ) =
8
√
π3

Γ
(

1
4

)2 e
θ ∓ iπ(M1 −M2)−

∫ ∞
−∞

dθ′

2π

ln[1 + exp(−ε±,∓(θ′))] + ln[1 + exp(−ε∓,±(θ′))]

cosh(θ − θ′)

ε±,∓(θ) =
8
√
π3

Γ
(

1
4

)2 e
θ ∓ iπ(M1 + M2)−

∫ ∞
−∞

dθ′

2π

ln[1 + exp(−ε±,±(θ′))] + ln[1 + exp(−ε∓,∓(θ′))]

cosh(θ − θ′)
(44)

P enters as the θ → −∞ boundary condition (from perturbative expansion of ODE)

ε+,+(θ,P) ∼ 4Pθ + 2C (P,M1,M2) , θ → −∞ (45)

C (P,M1,M2) = ln

 21−2PP Γ(2P)2√
Γ
(
P + 1

2 −M1

)
Γ
(
P + 1

2 + M1

)
Γ
(
P + 1

2 −M2

)
Γ
(
P + 1

2 −M2

)
 (46)
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Integrability for black holes A new method of computation of QNMs

Quasinormal modes from TBA

The QNMs condition in gravity variables reads alternatively as

Ȳ+,+(θn′ − iπ/2) = −1 , Q+,+(θn) = 0 (47)

or
ε̄+,+(θn′ − iπ/2) = −iπ(2n′ + 1) . (48)

Through the quantization condition on ε̄+,+ we can actually numerically compute
QNMs from TBA.

n l TBA Leaver WKB

0 1 0.869623 − 0.372022i 0.868932− 0.372859i 0.89642− 0.36596i
0 2 1.477990 − 0.368144i 1.477888− 0.368240i 1.4940− 0.36596i
0 3 2.080200 − 0.367076i 2.080168− 0.367097i 2.0916− 0.36596i
0 4 2.680363 − 0.366637i 2.680350− 0.366642i 2.6893− 0.36596i

Table: Comparison of QNMs in different methods (n′ = 0, Σ1 = Σ3 = 0.2, Σ2 = 0.4, Σ4 = 1).
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Integrability for black holes A new method of computation of QNMs

Comparison of methods of computation of quasinormal modes

n l TBA Leaver WKB
0 1 0.896681 − 0.40069i N.A. 0.93069− 0.39458i
0 2 1.5308 − 0.39676i N.A. 1.5511− 0.39458i
0 3 2.15708 − 0.395689i N.A. 2.1716− 0.39458i
0 4 2.78077 − 0.39525i N.A. 2.7921− 0.39458i

Table: Here Σ1 6= Σ3 and the Leaver method seems not applicable (N.A.).

Computing QNMs has been typically quite laborious, also because of their few exact
analytic characterizations.

The standard analytic method is the one with the continued fractions by Leaver we
found sometimes not applicable (in its original form).

Application of N = 2 gauge theory is a new analytic characterization of QNMs, but it
requires a nontrivial re-summation procedure for ωn ∼ Λn ∼ 1.

Our integrability exact method is direct and simple, but now we have developed for
just a few models (see below).
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Quantum gauge B period from TBA

Also for this SU(2) Nf = 2 found a relation between the pseudoenergy ε = − lnY
and the gauge periods

ε(θ,−u, im1,−im2,Λ2) =
8
√

2π

Λ2
aD(}, u,m1,m2,Λ2)

ε(θ,−u,−im1, im2,Λ2) =
8
√

2π

Λ2
aD(}, u,m1,m2,Λ2) +

8π

Λ2
(m1 + m2)eθ

(49)

We can prove it analytically by
Cauchy theorem relating the
different integration contours
in the complex plane (in red the
branch cuts).
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Quasinormal modes from gauge periods quantization conditions

We see that from our formalism it follows immediately that QNMs are given by
quantization conditions on the gauge integral periods

8
√

2π

Λ2
aD(}, u,m1,m2,Λ2) = −iπ(2n′ + 1) (50)

Recently other authors found QNMs to be given by quantization conditions on the gauge
instanton periods

AD(}, u,m1,m2,Λ2) = iπn (51)

but we know a consistent relations between the two kind of gauge periods. For instance
for Nf = 0 SU(2):

Q(θ,P) = exp

{
2πi

}
aD(u,Λ0, })

}
= i

sinh 1
}AD(a,Λ0, })

sinh 2πi
} a

, (52)
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Baxter’s T functions and their relations

Now, the presence of the irregular singularity of (28) at y → ±∞ (Stokes phenomenon) plays a role for defining
the T functions

T+,+(θ) = −iW [ψ−,−1, ψ−,1] , T̃+,+(θ) = iW [ψ+,−1, ψ+,1] . (53)

By expanding ψ±,1 in terms of ψ±,0, ψ±,−1 as

ψ+,−1 = −e−2πiM1ψ+,1 + e−iπM1 T̃+,+(θ)ψ+,0 (54)

T̃+,+(θ)ψ+,0 = e iπM1ψ+,−1 + e−iπM1ψ+,+1 (55)

we obtain the TQ relations

T+,+(θ)Q+,+(θ) = e iπM2Q+,−(θ −
iπ

2
) + e−iπM2Q+,−(θ +

iπ

2
)

T̃+,+(θ)Q+,+(θ) = e iπM1Q−,+(θ −
iπ

2
) + e−iπM1Q−,+(θ +

iπ

2
) .

(56)

By the invariance under the symmetries Ω± also the T periodicities follow

T−,+(θ + iπ/2) = T+,+(θ) , T̃+,−(θ + iπ/2) = T̃+,+(θ) (57)
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Another basic gauge-integrability identification

One can prove a relation between the T function for our doubly confluent Heun equation and its Floquet exponent
(such that ψ(y + 2πi) = e2πiνψ(y))

2 cos 2πν + 2 cos 2πM1 = T̃+,+(θ)T̃−,+(θ + i
π

2
)

2 cos 2πν + 2 cos 2πM2 = T+,+(θ)T+,−(θ + i
π

2
) .

(58)

By comparing the Λ (instanton) expansions we find

ν = ΠA = a (59)

and therefore the afore relations constitutes another basic link between integrability and gauge theory.
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Alternative QNMs quantization condition for Nf = 0

From the relation between T and a it follows a proof of the alternative quantization condition for quasinormal
modes for the Nf = 0 SU(2) theory

a(θn) =
n

2
, n ∈ Z . (60)

which was given by some authors for the D3 brane (corresponding to SU(2) Nf = 0).

Indeed, the TQ relation T (θ)Q(θ) = Q(θ − iπ/2) + Q(θ + iπ/2) means Q(θn − iπ/2) + Q(θn + iπ/2) = 0. This
and the QQ relation Q(θ + iπ/2)Q(θ − iπ/2) = 1 + Q2(θ) actually fixes Q(θn + iπ/2)Q(θn − iπ/2) = 1 and then

Q(θn ± iπ/2) = ±i (61)

are fixed, too. Again the QQ relation around θn forces Q(θ + iπ/2) = i ± Q(θ) + . . . and
Q(θ − iπ/2) = −i ± Q(θ) + . . . up to smaller corrections (dots). Therefore, TQ relation imposes

T (θn) = 2 cos 2πa(θn) = ±2 . (62)
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Partial generalization of alternative QNMs quantization condition

By making considerations on these TQ systems and the QQ system (42) like in the previous slide, we are not in
general able to conclude that the T -s are quantized, except in the case of equal masses M1 = M2 where we find

T+,+(θn)T−,−(θn) = 4 , (M1 = M2) . (63)

that generalizes (62).

It corresponds to (M1 = M2 = M)
T+,+(θn)T−,−(θn) = 4

[cos 2πν + cos 2πM]θ=θn = ±2 .
(64)
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Interpretation of integrability duality

Moreover ψ+,0(y) = ψ−,0(−y) is just the symmetry that exchange infinity (y → +∞) and the (analogue)
horizon (y → −∞), leaving the photon sphere (y = 0) fixed as in [BianchiRusso:2021] (thanks to identifications
of certain scattering angles with the SW period). In this respect, under this symmetry we have the T self-duality

T̃+,+(θ) = T+,+(θ) (M1 = M2) (65)
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Greybody factor

We notice that much of the BH theory seems to go in parallel to the ODE/IM
correspondence construction and its 2D integrable field theory interpretation, beyond
the determination of QNMs.

For instance also the greybody factor that parametrizes the Hawking radiation seems
to be ratio of Qs.

This can be understood by considering its absorption coefficient role as viewed in 1D
quantum mechanics.
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Present limitations and possible future developments

What we have described holds for the generalization of extremal charged BHs
(intersection of 4 stacks of D3 branes) and it corresponds to SU(2) Nf = 2, 1, 0 gauge
theories.

However, from the generality of construction it is manifest that our method should
apply many other theories. We can list

the SU(2) Nf = (2, 0) gauge theory and the associated gravity counterparts, like D1D5
fuzzballs and CCLP 5D BHs;
as to SU(2) Nf = 3 gauge theory and the general asymptotically flat Kerr-Newman BH. The
associated integrable structure appears to be a generalization of the conformal minimal
models.
Another simple but tricky case happens when all the (Heun) ODE singularities are regular,
e.g. SU(2) Nf = 4 or SU(2) quivers that is asymptotically AdS BHs. The corresponding IM
appear to be spin chains.
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Present limitations and possible future developments (cont.)

Analytic continuations of the TBAs in rapidity θ and the moduli are necessary to
obtain overtones ωn n ≥ 1 and also some particular gravitational systems.

Besides model generalization, it is very intriguing to study the application of the
integrability structure beyond the determination of the QNMs for the study of
gravitational solutions (greybody factor, etc.).

For AdS BHs the 3-fold correspendence Integrability/Gauge/Gravity could become 4-fold
through holographic duality to CFT.
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Conclusions

We have seen how 2D integrable models when studied in ODE/IM correspondence
approach can find

a natural connection to (deformed) N = 2 supersymmetric gauge theory
as well as to black hole perturbation theory
and shed light on the relation recently found between the two.

This allows to

find new results an all three sides of the correspondence
at the non-perturbative exact level.

In these new directions much extension work in either breadth and depth can still be
done.
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Additional details on the new gauge/gravity correspondence
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New result from N = 2 SYM: an alternative to Kerr Teukolsky equation

Consider Kerr BHs. The radial Teukolsky equation is complicated and uncoventional. This fact often prevents us
from understanding its analytic properties.

Hatsuda found a much simpler description through a new alternative equation[
f (z)

d

dz
f (z)

d

dz
+ (2Mω)2 − V (z)

]
φ(z) = 0 with f (z) = 1−

1

z
(66)

V (z) = f (z)

[
4c2 +

4c(m − c)

z
+

sAlm + s(s + 1)− c(2m − c)

z2
−

s2 − 1

z3

]
(67)

The alternative equation (66) is isospectral to the original one. Besides, it has the same form as the master
equations for spherically symmetric BHs if c and sAlm are regarded as given parameters.

Once moving to the N = 2 SYM, we have a symmetry for flavor masses respected by the QNM spectrum.
However, the same symmetry is not manifest at the level of differential equations.

The physical origin of equation (66) in BH perturbation theory is not known.
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General modal stability problem for Kerr(-dS) BHs

As Kerr(-de Sitter) black holes are stationary spacetimes, they correspond to equilibrium states for Einsten
equations, and one would like to determine whether they are stable or unstable equilibria.

Outside very special classes, stability of Kerr(-de Sitter) is an open question.

If Kerr-(dS) BHs are nonlinearly stable, the most basic statement one can hope to prove for Teukolsky equation is
that it is modally stable, i.e. that there are no separable solutions to it which are exponentially growing or bounded
and non-decaying in time. By separable solution we mean a solution of the form

α[s](t, r , θ, φ) = e−iωte imφS(θ)R(r) , (68)

where S and R satisfy, respectively, the angular and radial Teukolsky ODE.

For Kerr-(dS) BHs there are many possible sources of mode instabilities (such as superradiance).

It is remarkable that, in the Λ = 0 case, mode stability holds for the entire Kerr black
hole family with angular momentum |a| ≤ M.
In the Λ > 0 Kerr-dS case modal stability remains an open problem for general parameters.
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New result from N = 2 SYM: proofs of mode stability for Kerr(-dS) BHs

Thanks to the correspondence with N = 2 theories discovered first by Aminov, Grassi Hatsuda, Casals and Costa

gave

1 a new alternative proof of the classic mode stability result for Kerr BHs
2 a completely new (though partial in the parameter range) proof of mode stability for

Kerr-dS BHs.
The proofs of Casals-Costa makes use of previously unknown symmetries of the point spectrum of the radial
Teukolsky equation conjectured by Aminov-Grassi-Hatsuda and proven by Casals-Costa.

The second proof of Casals-Costa is most useful in the case s ∈ Z, where it rules out some of the modes in the
superradiant range, where it is known from energy conservation that unstable and non-decaying modes, if they
exist, must lie.
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New result from 2D CFT: greybody factor
The emission spectrum as measured by an observer at infinity is no longer thermal, but is given by

σ(ω)

exp ω−mΩ
TH

− 1
(69)

where σ(ω) is the so-called greybody factor, which can be defined as the flux going into the horizon normalized by
the flux coming in from infinity σ = φabs/φin.

From the solution of the connection problem for the radial Teukolsky / confluent Heun equation, Bonelli, Iossa,

Lichtig and Tanzini obtain an exact expression of the greybody factor σ in terms of the instanton part of the NS

free energy F inst .

Their result can be expressed in terms of only BH parameters by using Matone’s relation.
They checked their result with two different asymptotics. One of them is the
semiclassical result obtained by WKB analysis of the ODE, where it is given by the dual
SW period

σ ' exp

{
−aD
ε1

}
, ε1 → 0 . (70)
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New result from 2D CFT: Love numbers

Applying an external gravitational field to a self-gravitating body generically causes it to deform. The response of
the body to the external gravitational tidal field is captured by the so-called tidal response coefficients or Love
numbers.

In general relativity, the tidal response coefficients are generally complex, and the real part captures the
conservative response of the body, whereas the imaginary part captures dissipative effects. For four-dimensional
Kerr black holes, the conservative (real part) of the response coefficient to static external perturbations has been
found to vanish.

Love numbers are measurable quantities that can be probed with gravitational wave observations. [?]

Using their 2D CFT approach to the Teukolsky equation Bonelli, Iossa, Lichtig, Tanzini compute

the static ω = 0 Love number which agrees with the result in the literature;
the non-static Love number as an expansion in ω, that improves the result in the literature
by also adding instanton corrections.
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Thank you
for your attention!
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