New dualities from orientifold projections

Salvo Mancani Theories of the Fundamental Interactions 2022 13 June 2022 - Venice

Based on M. Bianchi, D. Bufalini, SM, F. Riccioni, hep-th/2003.09620 A. Antinucci, SM, F. Riccioni, hep-th/2007.14749 A. Antinucci, M. Bianchi, SM, F. Riccioni, hep-th/2105.06195

Table of contents

- 1. AdS/CFT & brane tiling
- 2. Orientifold Projection on tilings
- 3. Unoriented Conformal theories
- 4. Unoriented Duality
- 5. Outlook

AdS/CFT correspondence

AdS/CFT correspondence

Toric geometry and Brane Tiling

Given a particular geometry, what is the local physics? Focus on Toric geometries: $U(1)^2 \times U(1)_R$

Toric geometry and Brane Tiling

Given a particular geometry, what is the local physics? Focus on Toric geometries: $U(1)^2 \times U(1)_R$

Orientifold projection

Ω

Example:

```
O3<sup>±</sup> plane, near horizon space AdS_5 \times S^5/\mathbb{Z}_2
and gauge side \mathcal{N} = 4 with gauge group USp(N), SO(N) [Witten - 1998]
```

Orientifold projection

Example:

```
O3<sup>±</sup> plane, near horizon space AdS_5 \times S^5/\mathbb{Z}_2
```

and gauge side $\mathcal{N} = 4$ with gauge group USp(N), SO(N) [Witten - 1998]

Why the orientifold Ω ?

- It allows for SO, USp gauge groups and tensor matter fields [Bianchi, Sagnotti 1990; Witten 1998]
- Present in all attempts to reproduce the MSSM [Wijnholt 2007]
- It changes the qualitative feature of RG flow and IR dynamics [Argurio, Bertolini 2017]

Orientifold projection on Brane Tiling

In [Franco, Hanany, Krefl, Park, Uranga, Vegh - 2007], they study the \mathbb{Z}_2 involution of the torus with fixed loci. Such loci correspond to O-planes in the configuration, their charge determines the projection as

 $\mathbb{C}^3/\mathbb{Z}_2$

- Black nodes to white nodes
- $\prod \tau = (-1)^{N_W/2}$

 $\Omega = (\tau_0, \tau_{00}, \tau_1, \tau_{11})$

 $G = SO(N_0) \times USp(N_1) , \ \Omega_A = (+, -, -, +)$ $W^{\Omega_A}_{\mathbb{C}^3/\mathbb{Z}_2} = A_0 X^1_{01} X^2_{10} - S_1 X^2_{10} X^1_{01} , \ \mathcal{N} = 2$

• $\prod \tau = (-1)^{N_W/2}$

 $\Omega = (\tau_0, \tau_{00}, \tau_1, \tau_{11})$

 $G = SO(N_0) \times USp(N_1)$, $\Omega_A = (+, -, -, +)$

$$W^{\Omega_{A}}_{\mathbb{C}^{3}/\mathbb{Z}_{2}} = A_{0}X^{1}_{01}X^{2}_{10} - S_{1}X^{2}_{10}X^{1}_{01}$$
, $\mathcal{N} = 2$

 $G = SO(N_0) \times USp(N_1) , \ \Omega_{\rm B} = (+, +, -, -)$ $W^{\Omega_{\rm B}}_{\mathbb{C}^3/\mathbb{Z}_2} = S_0 X^1_{01} X^2_{10} - A_1 X^2_{10} X^1_{01} \quad , \ \mathcal{N} = 1$

Parent:

 \mathcal{C} onifold

 \mathcal{C}

Fixed lines orientifold on Brane Tiling

• Black (white) to black (white) nodes

 $\Omega = (\tau_0, \tau_1)$

 $G = SO(N_0) \times USp(N_1), \ \Omega_a = (+, -)$ $W_{\mathcal{C}}^{\Omega} = X_{01}^1 (X_{01}^2)^T X_{01}^2 (X_{01}^1)^T - X_{01}^1 (X_{01}^1)^T X_{01}^2 (X_{01}^2)^T$

Supersymmetric Theories

We focus (mainly) on 4d $\mathcal{N} = 1$ SCFT with

- gauge group $G = \prod_a G_a$
- matter fields X_{ab} , X_{bc} , ... in some representation ρ of G
- superpotential W(X), e.g. $Tr(X_{ab}X_{bc}X_{ca})$
- global symmetries $\prod_i U(1)_i$, [SU(n), ...], R-symmetry $U(1)_R$

Supersymmetric Theories

We focus (mainly) on 4d $\mathcal{N} = 1$ SCFT with

- gauge group $G = \prod_a G_a$
- matter fields X_{ab} , X_{bc} , ... in some representation ρ of G
- superpotential W(X), e.g. $Tr(X_{ab}X_{bc}X_{ca})$
- global symmetries $\prod_i U(1)_i$, [SU(n), ...], R-symmetry $U(1)_R$

The exact beta-function NSVZ for the gauge coupling g reads

$$\beta_{g} = -\frac{g^{3}}{16\pi^{2}} \frac{3T_{Adj} - \sum_{i} T_{\rho_{i}}(1 - \gamma_{i})}{1 - T_{Adj} \frac{g^{2}}{8\pi^{2}}}$$

$$\beta_{g} = 0 \xrightarrow{\qquad} T_{Adj} + \sum_{i} T_{\rho_{i}}(R_{i} - 1) = 0 \xrightarrow{\qquad} \text{R-symmetry anomaly-free}$$

$$gauge$$

SCFT: reach the maximum

Any abelian global factor $U(1)_q$ mixes together with the R-symmetry $U(1)_R$

For a general SUSY theory, the combination is not uniquely defined: R = R(x, y, ...).

SCFT: reach the maximum

Any abelian global factor $U(1)_q$ mixes together with the R-symmetry $U(1)_R$ For a general SUSY theory, the combination is not uniquely defined: R = R(x, y, ...).

On the contrary, there is a unique superconformal R-symmetry given by the local maximum [Intriligator, Wecht - 2003] of

$$a = \frac{3}{32} (3 \, Tr \, R^3 - Tr \, R) ,$$
$$T^{\mu}_{\mu} = a \, E_4 + c \, W^2 ,$$

The central charge a stands as a 'counting' of the d.o.f. and $a_{IR} < a_{UV}$ [Komargodski, Schwimmer - 2003]

The parent theory is a SCFT.

What is the fate of the conformal invariance after the orientifold involution Ω ?

- a) Usually broken, e.g. Conifold
- b) 'Restored' by the presence of flavour branes [Bianchi, Inverso, Morales, Pacifici 2014]
- c) Same *R*-charges of the parent (at large *N*)

The parent theory is a SCFT.

What is the fate of the conformal invariance after the orientifold involution Ω ?

- Usually broken, e.g. Conifold a)
- 'Restored' by the presence of flavour branes [Bianchi, Inverso, Morales, Pacifici 2014] b)
- Same R-charges of the parent (at large N) C)

Check the resulting $\mathcal{N} = 1$ theory:

- Find non-anomalous U(1)s

- Impose R-symmetry $U(1)_R$ is anomaly-free R = R(x, y, ...)- Impose R(W) = 2- a-maximization on $a = \frac{3}{32}(3 Tr R^3 Tr R)$

What is the fate of the conformal invariance after the orientifold involution Ω ?

What is the fate of the conformal invariance after the orientifold involution Ω ?

$$R_{ab} = r_{ab} + 1$$
, e.g. $R_{ab} = \frac{2}{3} \rightarrow r_{ab} = -\frac{1}{3}$

• Usually broken, e.g. Conifold with $N_0 = N_1 = N$

What is the fate of the conformal invariance after the orientifold involution Ω ?

$$R_{ab} = r_{ab} + 1$$
, e.g. $R_{ab} = \frac{2}{3} \rightarrow r_{ab} = -\frac{1}{3}$

• Same Conformal point of the parent, e.g.

• Usually broken, e.g. Conifold with $N_0 = N_1 = N$

Contributions to the central charge are halved at large N, with the same R-charges

$$a^{\Omega} = \frac{9}{32} Tr R^{3}$$

$$= \frac{9}{32} \left[(R_{ab} - 1)^{3} N_{a} N_{b} + \dots + (R_{T} - 1)^{3} \frac{1}{2} N(N \pm 2) + (N_{a}^{2} - 1) + \dots \frac{1}{2} N(N \pm 1) \right]$$
Bifundamental contribution, Tensor contribution Gauginos contribution half of the parent

$$\frac{a^{\Omega}}{a} = \frac{1}{2}$$

This happens for the choices Ω_A of $\mathbb{C}^3/\mathbb{Z}_2$ and Ω_a of Conifold with $SO(N_0) \times USp(N_0 - 2)$

Mass Deformation and Orientifold

Parent theories: $\mathbb{C}^3/\mathbb{Z}_2$ can be mass deformed via $\Delta W = m^2(\phi_0^2 - \phi_1^2)$. Below the mass scale, the effective theory is the Conifold [Klebanov, Witten - 1998]

In brane tiling models, the mass term breaks toricity, but can be restored in the effective theory [Bianchi, Cremonesi, Hanany, Morales, Pacifici, Seong - 2014]

Mass Deformation and Orientifold

Parent theories: $\mathbb{C}^3/\mathbb{Z}_2$ can be mass deformed via $\Delta W = m^2(\phi_0^2 - \phi_1^2)$. Below the mass scale, the effective theory is the Conifold [Klebanov, Witten - 1998]

In brane tiling models, the mass term breaks toricity, but can be restored in the effective theory [Bianchi, Cremonesi, Hanany, Morales, Pacifici, Seong - 2014]

Mass Deformation and Orientifold

Parent theories: $\mathbb{C}^3/\mathbb{Z}_2$ can be mass deformed via $\Delta W = m^2(\phi_0^2 - \phi_1^2)$. Below the mass scale, the effective theory is the Conifold [Klebanov, Witten - 1998]

In brane tiling models, the mass term breaks toricity, but can be restored in the effective theory [Bianchi, Cremonesi, Hanany, Morales, Pacifici, Seong - 2014]

Similarly, the orientifold theories are connected

A new scenario

What about choice Ω_B for $\mathbb{C}^3/\mathbb{Z}_2$?

A new scenario

What about choice Ω_B for $\mathbb{C}^3/\mathbb{Z}_2$?

A new scenario

What about choice Ω_B for $\mathbb{C}^3/\mathbb{Z}_2$?

$$\begin{array}{c} \blacksquare \\ \blacksquare \\ \blacksquare \\ \blacksquare \\ W_{\mathbb{C}^{3}/\mathbb{Z}_{2}}^{\Omega_{B}} = S_{0}X_{01}^{1}X_{10}^{2} - A_{1}X_{10}^{2}X_{01}^{1} \end{array} \right| \begin{bmatrix} a_{\mathbb{C}^{3}/\mathbb{Z}_{2}}^{\Omega_{B}} = \frac{27}{128} N^{2} \\ R_{S} = R_{A} = 1 \\ R_{01} = R_{10} = \frac{1}{2} \\ SO(N_{0}) \times USp(N_{0} - 2) \\ SO(N_{0}) \times USp(N_{0} - 2) \\ \blacksquare \\ SO(N_{0}) \times USp(N_{0} - 2) \\ \blacksquare \\ \end{array} \right| \begin{array}{c} a_{\mathbb{C}^{3}/\mathbb{Z}_{2}} = \frac{1}{2} N^{2} \\ R_{\phi_{0}} = R_{\phi_{1}} = R_{10} = \frac{2}{3} \\ R_{\phi_{0}} = R_{\phi_{1}} = R_{10} = \frac{2}{3} \\ W_{\mathbb{C}^{3}/\mathbb{Z}_{2}} = \epsilon_{ij}(\phi_{0}X_{01}^{i}X_{10}^{j} + \phi_{1}X_{10}^{i}X_{01}^{j}) \\ \blacksquare \\ \\ \\ \blacksquare \\ \\ \blacksquare \\ \\ \blacksquare \\ \\ \blacksquare \\ \blacksquare$$

The third scenario

What is happening ?

- Ω_B is $\mathcal{N} = 1$, set of conditions on Rsymmetry fix all R-charges; maximization of a is not needed
- Parent theory (as Ω_A) is $\mathcal{N} = 2$, whose R-symmetry group is $SU(2) \times U(1)_R$. Abelian subgroup of SU(2) mixes with $U(1)_R$: central charge is maximized over 1 variable

Compare

$$a_{\mathbb{C}^3/\mathbb{Z}_2}^{\Omega_B} = \frac{27}{128}N^2$$

$$a_{\mathbb{C}^3/\mathbb{Z}_2} = \frac{1}{2}N^2$$

$$R_S = R_A = 1 ,$$

$$R_{01} = R_{10} = \frac{1}{2},$$

$$SO(N_0) \times USp(N_0 - 2)$$

$$SU(N_0) \times SU(N_0 - 2)$$

The third scenario

What is happening ?

- Ω_B is $\mathcal{N} = 1$, set of conditions on Rsymmetry fix all R-charges; maximization of a is not needed
- Parent theory (as Ω_A) is $\mathcal{N} = 2$, whose R-symmetry group is $SU(2) \times U(1)_R$. Abelian subgroup of SU(2) mixes with $U(1)_R$: central charge is maximized over 1 variable
- Between parent and Ω_B we are losing a U(1) !

Not the whole story yet...

- The matter content of orientifold Ω_B of $\mathbb{C}^3/\mathbb{Z}_2$ and Ω_a of \mathcal{C} differ by tensor fields... whose contribution to anomalies is (R-1) = 0 (their contribution to the index as well)
- Orientifold Ω_B of $\mathbb{C}^3/\mathbb{Z}_2$ and Ω_a of \mathcal{C} share the same 't Hooft anomalies, central charge a and index

Not the whole story yet...

- The matter content of orientifold Ω_B of $\mathbb{C}^3/\mathbb{Z}_2$ and Ω_a of \mathcal{C} differ by tensor fields... whose contribution to anomalies is (R-1) = 0 (their contribution to the index as well)
- Orientifold Ω_B of $\mathbb{C}^3/\mathbb{Z}_2$ and Ω_a of \mathcal{C} share the same 't Hooft anomalies, central charge a and index
- Smells like a <u>duality</u>!

Orientifold Ω_B of $\mathbb{C}^3 / \mathbb{Z}_2$ and Ω_a of \mathcal{C} share the same 't Hooft anomalies, central charge *a* and index

A class of dual families

It can be generalized to $(L^{a,b,a})^{\Omega}$ [Antinucci, Bianchi, SM, Riccioni - 2021]

A class of dual families

It can be generalized to $(L^{a,b,a})^{\Omega}$ [Antinucci, Bianchi, SM, Riccioni - 2021]

A class of dual families

It can be generalized to $(L^{a,b,a})^{\Omega}$ [Antinucci, Bianchi, SM, Riccioni - 2021]

[Amariti, Fazzi, Rota, Segati - 2021] generalised further this picture and explored the origin of the duality

Salvo Mancani

 $\Omega = (\tau_0, \tau_3)$

 $W_{PdP_{3c}}^{\Omega} = X_{03}X_{01}X_{13} - X_{02}X_{23}X_{03} + X_{02}A_{22}(X_{12})^{T}(X_{01})^{T} - \tilde{S}_{11}X_{13}(X_{23})^{T}(X_{12})^{T}$

$$W_{PdP_{3b}}^{\Omega} = -X_{03}X_{01}X_{13} + X_{02}X_{23}X_{03}$$

+ $X_{01}X_{12}A_{22}(X_{12})^{T}(X_{01})^{T} - (X_{23})^{T}(X_{12})^{T}\tilde{S}_{11}X_{12}X_{23}$
+ $(X_{13})^{T}\tilde{S}_{11}X_{13} - X_{02}A_{22}(X_{02})^{T}$

 $+ X_{02}A_{22}(X_{12})^T(X_{01})^T - \tilde{S}_{11}X_{13}(X_{23})^T(X_{12})^T$

$$ΩA = (+, -, -, +)$$
 $ΩB = (-, +, -, +)$

 $SO(N) \times SU(N) \times SU(N+2) \times USp(N+2)$

$$\begin{array}{|c|c|} USp(N-2) \times SU(N) \times \\ SU(N) \times SO(N+2) \end{array}$$

$$W_{PdP_{3b}}^{\Omega} = -X_{03}X_{01}X_{13} + X_{02}X_{23}X_{03}$$

+ $X_{01}X_{12}A_{22}(X_{12})^{T}(X_{01})^{T} - (X_{23})^{T}(X_{12})^{T}\tilde{S}_{11}X_{12}X_{23}$
+ $(X_{13})^{T}\tilde{S}_{11}X_{13} - X_{02}A_{22}(X_{02})^{T}$

 PdP_{3b}

 $\Omega = (\tau_0, \tau_3)$

3

0

3

5

Salvo Mancani

3

0

3

2

 $SO(N) \times SU(N) \times SU(N+2) \times$ USp(N+2)

 $USp(N-2) \times SU(N) \times$ $SU(N) \times SO(N+2)$

 $\Omega = (\tau_0, \tau_3)$

$$W_{PdP_{3b}}^{\Omega} = -X_{03}X_{01}X_{13} + X_{02}X_{23}X_{03}$$

+ $X_{01}X_{12}A_{22}(X_{12})^{T}(X_{01})^{T} - (X_{23})^{T}(X_{12})^{T}\tilde{S}_{11}X_{12}X_{23}$
+ $(X_{13})^{T}\tilde{S}_{11}X_{13} - X_{02}A_{22}(X_{02})^{T}$

$$\Omega = (-, +)$$

$$USp(N - 2) \times SU(N) \times$$

$$SU(N) \times SO(N + 2)$$

Salvo Mancani

Unoriented AdS/CFT

The third scenario

Is the third scenario 'safe'?

- *R*-charges are different than the parent and it is not granted that the unitarity bound $(\Delta > 1)$ holds
- If not, some gauge-invariant operators decouple and other global *U*(1)s emerge: repeat a-maximization [Kutasov, Parnachev, Sahakyan 2003]
- Even if the unitarity bound holds, it's not granted the conformal point exist, but there are no clear 'signs'. The duality with the orientifold of another model make it safe.

Conclusions & Open Problems

• We have found a new mechanism for the orientifold projection that develops a conformal fixed point in the IR

• A web of dualities between orientifold of non-chiral theories (*L^{a,b,a}*) via quadratic marginal deformations

Together with the authors of [Amariti, Fazzi, Rota, Segati - 2021] we generalize the mechanism with quadratic marginal deformations to the orientifold of chiral theories (L^{a,b,a})/Z₂; the web involves also glide orientifold [García-Valdecasas, Meynet, Pasternak, Tatitscheff - 2021].
 A paper will appear soon [Amariti, Bianchi, Fazzi, Mancani, Riccioni, Rota - In progress]

Conclusions & Open Problems

• Only one chiral pair with quintic marginal operator. Can we find others? What is the origin of the duality? [Antinucci, SM, Riccioni - 2020]

• Dual pair must be connected to dual geometries. But before the orientifold projection they are different. How?

Thank you

Backup slides

When operators decouple: orientifold of SPP

$$W_{\text{SPP}}^{\Omega} = -\phi_0 X_{01} X_{10} + X_{12} X_{21} X_{10} X_{01}$$

$$r_{00} (N_0 - N_1 + 2\tau_0) = -(N_0 - N_1 - 2\tau_0) ,$$

$$r_{00} (N_0 - N_1 - 2\tau_{12}) = -(N_0 - N_1 + 2\tau_{12}) .$$

$$r_{00} = -\frac{p - 2\tau_0}{p + 2\tau_0} = -\frac{p + 2\tau_{12}}{p - 2\tau_{12}},$$

$$r_{01} = -\frac{2\tau_0}{p + 2\tau_0}, \qquad r_{12} = -\frac{p}{p + 2\tau_0}$$

Salvo Mancani

$$\begin{aligned} O_{0,j} &= \operatorname{Tr} \phi_0^j , \quad j > 1 , \\ \mathcal{M}_m &= (X_{12} X_{21})^m , \quad m \ge 1 , \\ \widetilde{\mathcal{M}}_{0,lk} &= \phi_0^l (X_{01} X_{10})^k , \quad l \ge 0 , \quad k \ge 1 \end{aligned}$$

Figure 12: The ratio $\tilde{a}_{spp}^{\Omega}/a_{spp}$ vs $p = N_0 - N_1$. The green points signal that there are no correction to the central charge, on orange points $(X_{12}X_{21})^m$ becomes free, while on red ones operators Tr ϕ_0^j start to decouple.

Unoriented AdS/CFT

Volume of the horizon

[Gubser -1999]: Vol(H⁵) = $\frac{\pi^3}{4} \frac{N^2}{a}$

Compare volumes of parent and unoriented at the same radius *R*:

$$\operatorname{Vol}(\mathrm{H}^{5}) \propto \frac{N^{2}}{a} \rightarrow \operatorname{Vol}^{\Omega} \propto \left(\frac{N}{2}\right)^{2} \frac{1}{a^{\Omega}} \propto \frac{1}{4} \frac{N^{2}}{a^{\Omega}} \rightarrow \frac{\operatorname{Vol}^{\Omega}}{\operatorname{Vol}} \propto \frac{1}{4} \frac{a}{a^{\Omega}} \begin{bmatrix} =\frac{1}{2} \text{ , in first scenario} \\ \\ >\frac{1}{2} \text{ , in third scenario} \end{bmatrix}$$

Volume of the horizon

Contribution to the superconformal index from matter fields:

$$i_X(t,s) = \sum \frac{t^{R_{ab}} \chi_{\rho_{ab}} - t^{2-R_{ab}} \chi_{\overline{\rho}_{ab}}}{(1-ts)(1-\frac{t}{s})}$$

Fields with R = 1:

- Adjoints
- Symmetric or Antisymmetric of real groups
- Symmetric or Antisymmetric in conjugated pairs of unitary groups