3d $\mathbf{N}=2$ dualities for SQCD with D-type superpotential

Antonio Amariti - TFI 2022 - Venezia 14/06/2022

Istituto Nazionale di Fisica Nucleare
Sezione di Milano

Based on 2204.06961 w/ Simone Rota (see also 1809.03796,1509.02199 \&1409.8623)

Motivations

SUSY dualities: why are they still important/useful?

- Links with mathematics
- Non perturbative dynamics
- Conformal window and AdS/CFT
- 3d bosonization
- Connections among dualities in different dimensions
- SUSY and global symmetry enhancements
- Relating quantum aspects in different dimensions (e.g. role of the monopoles)

Plan

- 3d reduction of 4d dualities
- Basic dualities and basic web
- The web for the A-type superpotential
- D-type
- 4d aspects
- The web
- Three sphere partition function
- Conclusions

4d/3d reduction

This work fits in the program of reduction of 4d Seiberg-like dualities to 3d (ARSW, Aharony-Razamat-Seiberg-Willett `13).

Original case: $\operatorname{SU}(\mathrm{N})$ SQCD with F flavors and $\mathrm{F}>\mathrm{N}+1$ (Seiberg `94)

Then extension to SO/USp SQCD (Intriligator-Seiberg `95 and IntriligatorPouliot `95) and to cases w/ one two-index tensor (Adj, Symm. or Anti-Symm) and Atype superpotential (Kutasov-SchwimmerSeiberg `95, Intriligator-Leigh-Strassler `95).

The ARSW procedure has been (or can be) applied to all these cases. Often the reduction can be studied with the aim of localization.

\widehat{O}	$W_{\widehat{o}}=0$
\widehat{A}	$W_{\widehat{A}}=\operatorname{Tr} Y^{2}$
\widehat{D}	$W_{\widehat{D}}=\operatorname{Tr} X Y^{2}$
\widehat{E}	$W_{\widehat{E}}=\operatorname{Tr} Y^{3}$
A_{k}	$W_{A_{k}}=\operatorname{Tr}\left(X^{k+1}+Y^{2}\right)$
D_{k+2}	$W_{D_{k+2}}=\operatorname{Tr}\left(X^{k+1}+X Y^{2}\right)$
E_{6}	$W_{E_{6}}=\operatorname{Tr}\left(Y^{3}+X^{4}\right)$
E_{7}	$W_{E_{7}}=\operatorname{Tr}\left(Y^{3}+Y X^{3}\right)$
E_{8}	$W_{E_{8}}=\operatorname{Tr}\left(Y^{3}+X^{5}\right)$.

Arnold's ADE classification of singularities, which precisely coincides with the possible relevant deformation superpotentials, listed as A_{k}, D_{k+2} and $E_{6,7,8}$

D-type superpotential? Curious, uncommon and more delicate dualities obtained by Brodie `96 and Brodie-Strassler `96.

4d and 3d SUSY with four supercharges: a brief overview

4d

- Global Anomalies
- Absence of axial symmetry
- U(1) gauge groups are IR free
- Exact R by a-maximization
- SYM action
- $V=(A, \lambda, D)$
- $\Lambda_{\text {holo }}=\operatorname{Exp}\left(1 / g_{4}^{2}\right)$
- Instanton: $W_{\text {eff }}=N \Lambda_{\text {holo }}^{3}$

3d

- Parity Anomalies
- Possible axial symmetry (broken by monopoles)
- Interacting $\mathrm{U}(1)$ gauge groups in the IR
- Exact R by F-maximization
- SYM and CS action
- $V=(A, \lambda, D, \sigma) \quad w / \quad \sigma \propto A_{4} \quad \& \quad \varphi=d^{*} F$
- $C B: Y \propto \operatorname{Exp}\left(\sigma / g_{3}^{2}+i \varphi\right)$
- BPS Monopoles: $W_{e f f} \propto \sum 1 / Y_{i}$

4d Duality not preserved (in general) in 3d by a "naive" dimensional reduction Reason: extra symmetries anomalous in 4d (e.g. axial in SQCD) can spoil the duality (e.g. different IR mixing with the R-symmetry in the two phases - check w/ F-max)

A bit naive: 3d RG does not necessarily eliminates all the finite size effects. There can be more sophisticated structures involving the CB.

Let's borrow this picture from Brodie-Strassler `96, the orange and pink circles generalize Seiberg `94 and Intriligator-Pouliot `95 for the A_{k} type superpotential

Kutasov-Schwimmer-Seiberg (KSS) `95

U(N) Adjoint SQCD,
w/ F flavors and
$W=\operatorname{Tr} X^{k+1}$

U(kF-N) Adjoint SQCD, w/ F flavors and
$W=\operatorname{Tr} x^{k+1}+\sum_{j=0}^{k-1} M_{j} q x^{k-1-j \tilde{q}}$
Bifundamental dressed mesons

$$
M_{j}=q X^{j} \tilde{q}
$$

$M_{j}=q X^{j} \tilde{q}$

Intriligator, Leigh-Strassler (ILS) `95

USp(2N) SQCD
w/. A (antisymmetric),
2 F flavors and
$W=\operatorname{Tr} A^{k+1}$

USp(2(k(F-4)-N)) SQCD w/. a (antisymmetric), 2 F flavors and

$$
W=\operatorname{Tr} a^{k+1}+\sum_{j=0}^{k-1} M_{j} q a^{k-1-j} q
$$

Symmetric dressed mesons

$$
M_{j}=q A^{j} q
$$

Circle
reduction

3d U(N) Nii `14 duality w/ KK monopoles

Circle
reduction

$\mathrm{D}_{\mathrm{k}+2}$

SO

4d $S U(n)$ SQCD with F flavors Q and \widetilde{Q} with two adjoints X and Y interacting through the superpotential

$$
W=\operatorname{Tr} X Y^{2}+\operatorname{Tr} X^{k+1}
$$

with k odd.
4d $S U(\tilde{n}=3 k F-n)$ SQCD with F dual flavors q and \widetilde{q} with two adjoints x and y interacting through the superpotential

$$
W=\operatorname{Tr} x y^{2}+\operatorname{Tr} x^{k+1}+\sum_{j=0}^{k-1} \sum_{\ell=0}^{2} \operatorname{Tr} \mathcal{M}_{j, \ell} q x^{k-1-j} y^{\ell} \widetilde{q}
$$

where the singlets $\mathcal{M}_{j, \ell}$ correspond under the duality map to the dressed mesons $Q X^{j} Y^{\ell} \tilde{Q}$ for $j=0, \ldots, k-1$ and $\ell=0,1,2$ of the electric phase.
$U s p(2 n)$ SQCD with $2 f$ fundamentals Q and two rank-two antisymmetric tensors A and B interacting through a superpotential

$$
W=\operatorname{Tr} A^{k+1}+\operatorname{Tr} A B^{2}
$$

$U S p(2 \tilde{n}=2(3 k f-n-4 k-2))$ SQCD with $2 f$ fundamentals q, two rank-two antisymmetric tensors a and b and the dressed mesons $M_{r s}^{(j, \ell)}=Q_{r} A^{j} B^{\ell} Q_{s}$ symmetric (antisymmetric) for $j \ell$ odd (even) with $j=0, \ldots, k-1$ and $\ell=$ $0,1,2$. The superpotential of the dual phase is

$$
W=T r a^{k+1}+T r a b^{2}+\sum_{j=0}^{k-1} \sum_{\ell=0}^{2} M_{j \ell} q a^{k-j-1} b^{2-\ell} q
$$

where the singlets $\mathcal{M}_{j, \ell}$ correspond under the duality map to the dressed mesons $Q X^{j} Y^{\ell} Q$ for $j=0, \ldots, k-1$ and $\ell=0,1,2$ of the electric phase. Furthermore k here is required to be odd, otherwise the global anomalies do not match.

	$G_{\text {ele }}$	$G_{m a g}$
SQCD	$\mathrm{SU}(\mathrm{N})$	$\mathrm{SU}(\mathrm{F}-\mathrm{N})$
A_{k}	$\mathrm{SU}(\mathrm{N})$	$\mathrm{SU}(\mathrm{kF}-\mathrm{N})$
D_{k+2}	$\mathrm{SU}(\mathrm{N})$	$\mathrm{SU}(3 \mathrm{kF}-\mathrm{N})$

	$G_{\text {ele }}$	$G_{\text {mag }}$
SQCD	$\mathrm{USp}(2 \mathrm{~N})$	$\mathrm{USp}(\mathrm{F}-\mathrm{N}-4)$
A_{k}	$\mathrm{USp}(\mathrm{N})$	$\mathrm{SU}(\mathrm{k}(\mathrm{F}-4)-\mathrm{N})$
D_{k+2}	$\mathrm{USp}(\mathrm{N})$	$\mathrm{SU}(3 \mathrm{k}$ F-4k-2-N)

Chiral ring truncation: classical for odd k, quantum (conjectured) in the case of even k

$$
\begin{aligned}
& F_{Y}=X Y+Y X=0 \\
& F_{X}=Y^{2}+X^{k}=0 \\
& Y F_{X}+F_{X} Y=0 \rightarrow Y X^{k}+X^{k} Y= \\
& =\left((-1)^{k}+1\right) X^{k} Y=-2 Y^{3}
\end{aligned}
$$

NOTE: absence of a type IIA description of the D-type dualities in the Hanany-Witten setup

\begin{tabular}{ll}
\& \begin{tabular}{l}
\(S^{1}\) reduction of \(U(n)\) Brodie duality by breaking \\
the gauge symmetry in SQCD sectors \\
Hwang-Kim-Park `18: \\
Aharony like dual \(\mathbf{W}\) involving also \\
flux-two monopoles \(| \pm 1, \pm 1,0, \ldots, 0\rangle\)
\end{tabular} \\
Hwang-Kim-Park `22: \& \begin{tabular}{l}
New U(n) dualities with linear monopole and \\
anti-monopole W in both phases \\
4d origin not discussed
\end{tabular} \\
A.A.-S.Rota `22: \& \begin{tabular}{l}
Unified picture, embedding of the various models in \\
the general web
\end{tabular}
\end{tabular}

Novelty: non-trivial "topological" sectors, more complicated that in the other cases

Caveat: one conjecture necessary (w/o proof, but consistent w/ the whole web)

$$
\text { CONJECTURE: } \mathrm{U}(\mathrm{k}-1) \text { with } W=\operatorname{Tr} X Y^{2}+\operatorname{Tr} X^{k+1}+V_{ \pm} \text {is confining }
$$

Results

A further check: the three sphere partition function

$$
\begin{aligned}
& Z_{G ; k}(\lambda ; \vec{\mu})=\frac{1}{|W|} \int \prod_{i=1}^{G} \frac{\mathrm{~d} \sigma_{i}}{\sqrt{-\omega_{1} \omega_{2}}} \mathrm{e}^{\frac{k \pi \mathrm{i} \sigma_{i}^{2}}{\omega_{1} \omega_{2}}+\frac{2 \pi \mathrm{i} \lambda \sigma_{i}}{\omega_{1} \omega_{2}}} \frac{\prod_{I} \Gamma_{h}\left(\omega \Delta_{I}+\rho_{I}(\sigma)+\widetilde{\rho}_{I}(\mu)\right)}{\prod_{\alpha \in G_{+}} \Gamma_{h}(\pm \alpha(\sigma))} \\
& \Gamma_{h}\left(x ; \omega_{1}, \omega_{2}\right) \equiv \Gamma_{h}(x) \equiv \mathrm{e}^{\frac{\pi \mathrm{i}}{2 \omega_{1} \omega_{2}}}\left((x-\omega)^{2}-\frac{\omega_{1}^{2}+\omega_{2}^{2}}{12}\right.
\end{aligned} \prod_{j=0}^{\infty} \frac{1-\mathrm{e}^{\frac{2 \pi \mathrm{i}}{\omega_{1}}\left(\omega_{2}-x\right)} \mathrm{e}^{\frac{2 \pi \mathrm{i} \omega_{2} j}{\omega_{1}}}}{1-\mathrm{e}^{-\frac{2 \pi \mathrm{i}}{\omega_{2}} x} \mathrm{e}^{-\frac{\pi \omega_{1} \omega_{1} j}{\omega_{2}}}} .
$$

- Reduction of 4d SCI (or $Z_{S^{3} \times S^{1}}$) to $Z_{S^{3}}$
- 4d integral identities (not yet proven!!) become 3d identities
- Interpretation: effective 3d dualities on S^{1}
- Real mass flows \& dual Higgsing
- Cancellation of divergent contributions in the new (IR) identities
- "Topological" vacua related to new gauge sectors
- Eliminated by conjecturing an integral identity for $\mathrm{U}(\mathrm{k}-1) \mathrm{w} / 1$ flavor $\& W=\operatorname{Tr} X Y^{2}+\operatorname{Tr} X^{k+1}+V_{ \pm}$

Conclusions

- Prove the confining duality (using field theory methods and/or localization). Mirror symmetry?
- Dualities with linear superpotential for the flux-two monopole(s)
- Generalizations
- Chern-Simons
- Chiral matter
- SU(n)
- Other rank-two tensors
- Orthogonal case
- F-maximization
- Relevancy of the monopole deformations
- Conformal window
- Brane picture
- Case of even k

