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Introduction and motivation: TT̄ deformation

We consider a trajectory in the field theory space parameterized by t and denote the
Lagrangian at each point of the trajectory by Lt .

An irrelevant deformation of two-dimensional theories is triggered by ”detT
(t)
µν”.

L(t+δt) = L(t) + δt detT (t)
µν =⇒ d

dt
S =

∫
d2x εµρενσT

µνT ρσ (1)

This deformation preserves the integrability of theory and opens the possibility to explore
non-trivial UV fixed points.
[Smirnov, Zamolodchikov ’16; Cavaglià, Negro, Szécsényi, Tateo ’16]
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”Good” sign vs ”bad” sign

The TT̄ deformation is related to gravity, string theory and encode deep geometrical
aspects, such as:

integrating over random flat geometries [Cardy]

coupling with JT gravity [Dubovski, Gorbenko, Hernandez-Chifflet; Tolley; . . . ]

This deformation allows computing the exact deformed finite volume spectrum, since the
eigenvalues obey the Burger’s equation.
Two possible signs for the deformation parameter:

t > 0 (“good” sign): the density of states in a deformed CFT interpolates between
Cardy log ρ ∼

√
E and Hagedorn log ρ ∼ E (nonlocal QFT).

t < 0 (“bad” sign): typically characterized by nonperturbative ambiguities;
a deformed CFT is dual to AdS3 with a radial cutoff.

Despite recent activity on the subject, certain aspects of TT-deformed theories are
still enigmatic.

Our goal: investigate a simple example of TT̄ -deformed QFT2, YM2, and see if we can
make sense of it in both ranges of the deformation parameter.
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The undeformed theory: Yang–Mills in two dimensions

The action of Yang-Mills theory with gauge group U(N) on a two dimensional manifold
Σ is

SYM2 =
1

4gYM2

∫
Σ

d2x
√
hTr

(
F abFab

)
(2)

invariant under area-preserving diffeomorphisms

one effective adimensional coupling α = g 2
YMA

If we introduce an auxiliary field φ, the action is rewritten

SYM2 =
1

2

∫
Σ

d2x
[
Tr
(
φεabFab

)
−
√
hg 2

YMTr
(
φ2
) ]

(3)

In the first order formulation, one can easily read off the hamiltonian H =
g2

YM
2
Tr
(
φ2
)

and compute the spectrum.
The partition function localizes on a sum over irreps, [Migdal ’75; Witten ’92; Rusakov ’90]

Z(α) =
∑
R

(dimR)2−2g e−
α
2N

C2(R) (4)

where c2(R) and dimR are the quadratic Casimir and the dimension of R.
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TT̄ -deformed Yang–Mills: a first step

In the first order formalism, we expect the following form of the deformed action Sτ

1

2

∫
Σ

d2x
[
Tr
(
φεabFab

)
−
√
hg 2

YMV (τ, φ)
]

(5)

Thus we get the following equation for the deformed potential:

∂τ V (τ, φ) = V (τ, φ)2 V (0, φ) =
g 2

YM

2
Tr
(
φ2
)

(6)

which is solved by

V (τ, φ) =
g 2

YM

2

Tr
(
φ2
)

1− g2
YM
τ

2
Tr (φ2)

(7)

At the level of the spectrum, the TT̄ deformation is thus realized in this way

C2(R) 7−→ C2(R)

1− τC2(R)/N3
. (8)

[Conti, Iannella, Negro, Tateo ’18; Ireland, Shyam ’20; Santilli, Szabo, Tierz ’20]

Similarly, one can compute the TT̄ -deformed Lagrangian

Lτ =
3

8τ

[
3F2

(
−1

2
,−1

4
,

1

4
;

1

3
,

2

3
;

256

27
2τL0

)
− 1

]
. (9)

which holds for the Abelian U(1) case. [Conti, Iannella, Negro, Tateo ’18]
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A puzzle

What about the quantum partition function for TT̄ deformed Yang–Mills?

One would be tempted to write down

Z (α, τ) =
∑

R(dimR)2−2g e
− α

2N
C2(R)

1−τC2(R)/N3
(10)

Inconsistencies: For any τ 6= 0: the partition function diverges for g < 2 !

For τ > 0

The Hamiltonian is pathological at c2 (R)→ N3

τ
, as H → ±∞

extending the solution for H above such threshold appears devoid of physical
meaning

should we remove by hand a portion of the physical spectrum?

For τ < 0

we expect instanton-like corrections in the deformation parameter to cure the
divergence of Z(α, τ)

not clear how such nonperturbative contributions could arise and be unambiguously
fixed
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extending the solution for H above such threshold appears devoid of physical
meaning

should we remove by hand a portion of the physical spectrum?

For τ < 0

we expect instanton-like corrections in the deformation parameter to cure the
divergence of Z(α, τ)

not clear how such nonperturbative contributions could arise and be unambiguously
fixed
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The U(1) abelian case as a toy model

Can we make sense of the partition function for both signs of τ?

We have computed it for generic N on the sphere topology (g = 0)
[upcoming: L. Griguolo, J. Papalini, R. Panerai and D. Seminara]

it is possible to explain dinamically the truncation of the spectrum and the
non-perturbative contributions.

For semplicity, let us consider the U(1) abelian case. The undeformed partition
function for Maxwell theory for any genus reads

Z(α; 0) =
∞∑

`=−∞

e−α`
2/2 = ϑ3(e−α/2) (11)

Via Poisson resummation, we can find its dual representation

Z(α; 0) =
∞∑

m=−∞

√
2π

α
e−2π2m2/α (12)

where

Sclass(m) =
2π2m2

α

1

2π

∫
Σ

d2x
√
h F12 = m ∈ Z (13)

is the classical instanton action for configurations of quantized magnetic flux m.
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Our strategy

Consider Z (α, τ) as a formal expression obeying the Flow equation:

Flowα,τZ (α, τ) =

[
∂

∂τ
+ 2α

∂2

∂α2

]
Z (α, τ) = 0 (14)

which can be easily derived from the Burgers’ equation of the energy levels.

Since the deformed Lagrangian is a monotonic function of the undeformed one L0

δSτ
δAµ

=
δSτ
δS0

δS0

δAµ
= 0 (15)

the original classical solutions of DF = 0 are still extrema of the deformed action!

The key idea:
1 classical solutions are labeled by their quantized flux. So the monopole charge m is

conserved along the flow!
2 starting form the undeformed known initial condition, we evolve each flux sector zm

through the TT̄ flow equation independently

Flowα,τ zm (α, τ) = 0 zm (α, 0) =
√

2π
α

e−2π2m2/α (16)

3 we make sure that the sum over deformed instantons is convergent and perform it

Z (α, τ) =
∑

m zm (α, τ) (17)
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General solution and boundary conditions

The flow equation can be solved by separation of variables. The generic solution for the
m flux sector is a linear combination

zm (α, τ) =
∑
s∈Γ

τ−s

s!

[
psU

(
1

2
+ s, 0,

α

2τ

)
+ qs

α

2τ
1F1

(
3

2
s + 1, 2,

α

2τ

)]
(18)

where the coefficients ps , qs and the set Γ are determined by imposing the following
conditions:

the solution must be real and finite

zm (α, τ) must reproduce the correct undeformed limit zm (α, 0) when τ → 0, up to
non perturbative ambiguities. In fact the 1F1 will carry contributions of the form
e
α
2τ
∑

n fn (α) τ n that are obviously absent in the naive perturbative expansion!

zm (α, τ) must reproduce the semiclassical limit when α→ 0 and σ = 4π2τ
α2

− log (zm (α, τ)) ' 3π2

2ασ

[
3F2

(
−1

2
,−1

4
,

1

4
;

1

3
,

2

3
;

256

27
m2σ

)
− 1

]
= Scl (m, σ) (19)

i.e. the deformed action evaluated on the classical solution associated to a monopole
charge m.
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τ > 0

The correct choice is

zm (α, τ) =

√
π

τ

∞∑
s=0

1

s!

(
−π

2m2

τ

)s
U

(
s +

1

2
, 0,

α

2τ

)
(20)

We perform the sum inside the integral representation of the Tricomi U function and we
get:

zm (α, τ) =

∫ +∞

−∞
dy e2πimyφ(y) φ(y) = e

− αy2

2(1−τy2) Θ
(

1− y 2τ
)

(21)

where φ(y) is a test function.

Now, the sum of e2πimx over m simply yields the Dirac comb of period 1.
=⇒This localizes the integral over the contributions of integers n less or equal than the
threshold imposed by the Θ function.
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Result for τ > 0

The deformed partition function for τ > 0 is

Z (α, τ)U(1) =

b 1√
τ
c∑

`=−b 1√
τ
c

e
−α

2
`2

1−τ`2 (22)

Observations:

The final result is similar to what one would write by using the naive prescription but
the deformed spectrum has a cutoff.

The deformation acts on the spectrum by “inflating” it and only a finite number of
energy levels survive. All energy levels above such threshold drop out of the
spectrum.

When τ > 1, almost nothing is left: the entire spectrum consists of the sole ground
state and the partition function becomes trivial: Z = 1.
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Gluing and phase transitions

The partition function for τ > 0 is nonanalytic whenever τ−
1
2 is integer. Such

nonanaliticities are the signs of phase transitions of infinite order.

A natural question: What are order parameters for such transitions?

We can easily generalize our result to an arbitrary topology with b boundaries:

Zb(α, τ, θ1, . . . , θb) =

b 1√
τ
c∑

`=−b 1√
τ
c

e
− α`2

2(1−`2τ)
+i(θ1`+...+θb`)

. (23)

where the θ’s parametrize the boundary holonomies.

A correlator of two Polyakov loops is computed by gluing two cylinders together

〈Wn1Wn2〉 =

∫ 2π

0

dθ1

2π

∫ 2π

0

dθ2

2π
ei(θ1n1+θ2n2) Z2(α1, τ, θ1, θ2)Z2(α2, τ, θ1, θ2)

Z(α1 + α2, τ)
. (24)

where n1, n2 ∈ Z label the U(1) representations of the Wilson loops at the interface.
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. (23)

where the θ’s parametrize the boundary holonomies.

A correlator of two Polyakov loops is computed by gluing two cylinders together

〈Wn1Wn2〉 =

∫ 2π

0

dθ1

2π

∫ 2π

0

dθ2

2π
ei(θ1n1+θ2n2) Z2(α1, τ, θ1, θ2)Z2(α2, τ, θ1, θ2)

Z(α1 + α2, τ)
. (24)

where n1, n2 ∈ Z label the U(1) representations of the Wilson loops at the interface.
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Polyakov loops as order parameters

It is nonvanishing for n1 = −n2 = n.

L

The Polyakov loops can be interpreted as the wordlines of a
test particle-antiparticle pair wrapping the thermal circle.

In the decompactification limit, where α = α1 + α2 →∞
while α2 = e2Lβ is fixed.

〈Wn W−n〉 ∼ e
−e2Lβ n2

2(1−τn2) Θ(1− τn2) . (25)

The correlator acts as an order parameter.

τ < n
−2: attractive potential that grows linearly with L: confined phase.

Effective charge eeff = en/
√

1− τn2.

τ > n
−2: the charged particles cannot exist as individual excitations, seemingly

decoupling from the theory.
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τ < 0

The correct linear combination for τ < 0 is instead

zm (α, τ) =
πα

2(−τ)3/2

∞∑
s=0

1

s!

(
−4π2m2

τ

)s/2

1F1

(
s

2
+

3

2
; 2;

α

2τ

)
(26)

Exploiting an integral representation of the Kummer function, we get

zm (α, τ) = −
∮
γ

du
iαe−2π|m|

√
−u

4π |m| (τu − 1)2 e
− αu

2(1−τu) (27)

The integration over γcircle
vanishes in the limit of large R.

Instead, the contribution of γcut is
evaluated by taking the
discontinuity of the integrand
across the cut of the square root.
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Result for τ < 0

Upon integrating by parts and setting u = y 2, we find

zm (α, τ) = 2

∫ +∞

0

dy

(
e
−α

2
y2

1−τy2 − e
α
2τ

)
cos (2πmy) (28)

When summing over m, we observe again the appearance of the Dirac comb. We get

Z (α, τ)U(1) =
∞∑

`=−∞

(
e
−α

2
`2

1−τ`2 − e
α
2τ

)
(29)

Observations:

The difference with the naive prescription is due to the presence of an additional
term, which is an instanton-like correction non perturbative in τ .

The new term ensures the convergence of the above, since it precisely matches the
asymptotic value of the upper part of the spectrum.
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The semiclassical limit for τ < 0

We can reorganize the contour integral representation for zm in this way

zm (α, τ) ' iπm

α

∮
dv

v

√
−v e−

4π2m2

α
χ(v) (30)

where
χ(v) =

v

2 (1−m2σv)
+
√
−v (31)

We compute the stationary point for the phase

χ′(−ω2
∗) = 0 ω∗ = 3F2

(
1

2
,

3

4
,

5

4
;

4

3
,

5

3
;

256

27
m2σ

)
(32)

and we apply the steepest descent approximation for the integral.
We get the expected result

zm (α, τ) '
√

2π

α
h
(
m2σ

)
e−Scl (m,σ) (33)

Jacopo Papalini (University of Parma)
TFI 2022 Venice, June 14
16 / 19



The semiclassical limit for τ < 0

We can reorganize the contour integral representation for zm in this way

zm (α, τ) ' iπm

α

∮
dv

v

√
−v e−

4π2m2

α
χ(v) (30)

where
χ(v) =

v

2 (1−m2σv)
+
√
−v (31)

We compute the stationary point for the phase

χ′(−ω2
∗) = 0 ω∗ = 3F2

(
1

2
,

3

4
,

5

4
;

4

3
,

5

3
;

256

27
m2σ

)
(32)

and we apply the steepest descent approximation for the integral.

We get the expected result

zm (α, τ) '
√

2π

α
h
(
m2σ

)
e−Scl (m,σ) (33)

Jacopo Papalini (University of Parma)
TFI 2022 Venice, June 14
16 / 19



The semiclassical limit for τ < 0

We can reorganize the contour integral representation for zm in this way

zm (α, τ) ' iπm

α

∮
dv

v

√
−v e−

4π2m2

α
χ(v) (30)

where
χ(v) =

v

2 (1−m2σv)
+
√
−v (31)

We compute the stationary point for the phase

χ′(−ω2
∗) = 0 ω∗ = 3F2

(
1

2
,

3

4
,

5

4
;

4

3
,

5

3
;

256

27
m2σ

)
(32)

and we apply the steepest descent approximation for the integral.
We get the expected result

zm (α, τ) '
√

2π

α
h
(
m2σ

)
e−Scl (m,σ) (33)

Jacopo Papalini (University of Parma)
TFI 2022 Venice, June 14
16 / 19



Conclusions and outlook

The flow equation is a powerful tool to make sense of the deformed theory.

We have derived the exact partition function for the TT̄ -deformed U(1) Maxwell theory.
The exact results can be generalized to U(N).
For τ > 0:

we have dinamically proven that the spectrum of the theory undergoes a drastic
reduction with only a finite number of states surviving.

The truncation of the spectrum comes with an infinite number of quantum phase
transitions, each associated with the vanishing of a certain correlator of Polyakov
loops.
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Conclusions and outlook

For τ < 0:

in our setup a non-perturbative term naturally emerges to cure the naive divergence
of Z(α, τ).

any non-pertubative ambiguity is fixed by the semiclassical limit.

Possible future directions:

extend our approach to different topologies, e.g. the torus.

study the large-N limit in the presence of the deformation and explore the fate of
the Gross-Taylor string expansion.

study the phase diagram of the TT̄ theory at large N.

study observables, such as Wilson loops, at large N to better characterize the
dynamics of these theories.

generalize this construction to theories with matter.
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