Stringy Quintessence Models in the Swampland

Max Brinkmann

TFI, Venice

13.06.2022

INFN Istituto Nazionale di Fisica Nucleare

Coming soon to an arXiv near you!

Based on "Stringy multifield quintessence and the swampland" with Michele Cicoli, Giuseppe Dibitetto and Francisco G. Pedro (to appear)

- Motivation: swampland vs. observation
- Around the swampland? Multifield quintessence!
- Stringy models I: universal moduli
- Stringy models II: non-universal moduli
- A potential problem: Q-balls

Motivation

A cosmological constant problem

- The CC is not a free parameter in quantum gravity.
- In EFT, it is just the vev of the scalar potential.
- A flat potential can sometimes have the effect of a CC (slow-roll).

Motivation

A cosmological constant problem

- The CC is not a free parameter in quantum gravity.
- In EFT, it is just the vev of the scalar potential.
- A flat potential can sometimes have the effect of a CC (slow-roll).

Observations

- CMB: explained by Inflation
- Today: accelerated expansion
- \Rightarrow Positive CC, $\Lambda > 0$

Theory

- No dS in parametric control
- Type IIA no-go theorem
- quantum break time
-
- \Rightarrow (no-)dS conjecture, $\Lambda \leq 0$

dS swampland conjecture and accelerating cosmologies

The (refined) dS conjecture

[Obied/Ooguri/Spodyneiko/Vafa '18; Garg/Krishnan '18; Ooguri/Palti/Shiu/Vafa '18]

The scalar potential V of an EFT coupled to quantum gravity in the UV must respect either

$$|\nabla V| \ge \frac{c}{M_p} \cdot V$$
 or $\min(\nabla_i \nabla_j V) \le -\frac{c'}{M_p^2} \cdot V$

with c, c' > 0 and $\mathcal{O}(1)$.

dS swampland conjecture and accelerating cosmologies

The (refined) dS conjecture

[Obied/Ooguri/Spodyneiko/Vafa '18; Garg/Krishnan '18; Ooguri/Palti/Shiu/Vafa '18]

The scalar potential $\,V\,$ of an EFT coupled to quantum gravity in the UV must respect either

$$|\nabla V| \geq \frac{c}{M_p} \cdot V$$
 or $\min(\nabla_i \nabla_j V) \leq -\frac{c'}{{M_p}^2} \cdot V$

with c, c' > 0 and $\mathcal{O}(1)$.

Implications for cosmology

- Clearly forbids (meta-)stable dS vacua $\nabla V = 0$, V > 0!
- Also flat slow-roll models $\epsilon_V \equiv \frac{1}{2} \left(\frac{\nabla V}{V} \right)^2 \ll 1$ are ruled out.

Multifield cosmology

Alternatives to dS or slow-roll

Accelerated expansion can be achieved with a steep potential, e.g. by rotating in a curved field space. [Brown '17; Achicarro/Palma '18; Cicoli/Dibitetto/Pedro '20]

- Kinetic couplings: can't canonically normalize all fields at once
- Energy dissipates into rotation, slowing down the rolling field

Multifield cosmology

Alternatives to dS or slow-roll

Accelerated expansion can be achieved with a steep potential, e.g. by rotating in a curved field space. [Brown '17; Achicarro/Palma '18; Cicoli/Dibitetto/Pedro '20]

- Kinetic couplings: can't canonically normalize all fields at once
- Energy dissipates into rotation, slowing down the rolling field

Multifield quintessence – from string theory?

- Hard to get many e-folds [Aragam/Chiovoloni/Paban/Rosati/Zavala '21]
- Focus on late-time cosmology instead
- Less e-folds needed, but observational constraints
- 2 field model has structure akin to string moduli

Can ST satisfy the dS conjecture and get late-time cosmology right?

[upcoming work with Cicoli, Dibitetto, Pedro]

Multifield quintessence

Accelerated Expansion

Slow-roll:
$$\epsilon_H = -\frac{\dot{H}}{H^2}$$
, $0 < \epsilon_H < 1$

Single field case

$$\epsilon_V \equiv rac{1}{2} \left(rac{
abla V}{V}
ight)^2 = \epsilon_H \,, \quad \epsilon_V \gtrsim 1 \quad ext{(dS conj.)}$$

The dS conjecture forbids flat potentials needed for slow roll.

Multifield quintessence

Accelerated Expansion

Slow-roll:
$$\epsilon_H = -\frac{\dot{H}}{H^2}$$
, $0 < \epsilon_H < 1$

Single field case

The dS conjecture forbids flat potentials needed for slow roll.

Multifield case

Rotation in moduli space slows down the rolling field.

$$\Rightarrow \quad \epsilon_V \equiv rac{1}{2} \left(rac{
abla V}{V}
ight)^2
eq \epsilon_H \; !$$

Possible to have steeper potentials while accelerating.

Action

Requirements: Gravity, 2 fields, kinetic coupling, scalar potential.

$$S = \int d^4x \sqrt{-g} \left(\frac{M_p^2}{2} R - \frac{1}{2} (\partial \phi_1)^2 - \frac{1}{2} f(\phi_1)^2 (\partial \phi_2)^2 - V(\phi_1) \right)$$

Action

Requirements: Gravity, 2 fields, kinetic coupling, scalar potential.

$$S=\int \mathsf{d}^4 x\, \sqrt{-g}\left(rac{M_p^{\,2}}{2}R-rac{1}{2}(\partial\phi_1)^2-rac{1}{2}f(\phi_1)^2(\partial\phi_2)^2-V(\phi_1)
ight)$$

Natural situation in String theory

e.g. Kähler moduli in IIB flux vacua: $T = \tau + i\vartheta$, $K = -3\log(T + \overline{T})$

$$egin{aligned} \mathcal{L}_{\mathsf{kin}} &\sim \mathcal{K}_{T\overline{T}} \,\partial T \partial \overline{T} = rac{3}{4 au} \left((\partial au)^2 + (\partial artheta)^2
ight) \ &\Rightarrow \quad \phi_1 = \sqrt{3/2} \, \mathsf{log}(au) \,, \quad \phi_2 = artheta \ f(\phi_1) = \sqrt{3/2} \, e^{\sqrt{3/2} \, \phi_1} \ V(\phi_1) &\sim rac{1}{ au} = e^{-\sqrt{3/2} \, \phi_1} \end{aligned}$$

Friedmann equations

$$H^2 = \frac{1}{6M_p^2} \left(\dot{\phi_1}^2 + f^2 \dot{\phi_2}^2 + 2V + \rho_{\text{matter}} \right)$$

Defining new variables:

$$x_1 = \dot{\phi}_1 (\sqrt{6}H M_p)^{-1}$$

$$x_2 = f \dot{\phi}_2 (\sqrt{6}H M_p)^{-1}$$

$$y_1 = \sqrt{V} (\sqrt{3}H M_p)^{-1}$$

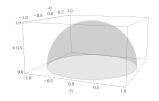
Cosmological Observables:

$$\omega_{\phi} = \frac{x_1^2 + x_2^2 - y_1^2}{x_1^2 + x_2^2 + y_1^2}$$

$$\Omega_{\phi} = x_1^2 + x_2^2 + y_1^2$$

Friedmann equations

$$H^2 = \frac{1}{6M_p^2} \left(\dot{\phi_1}^2 + f^2 \dot{\phi_2}^2 + 2V + \rho_{\text{matter}} \right)$$



Cosmological Observables:

$$\omega_{\phi} = \frac{x_1^2 + x_2^2 - y_1^2}{x_1^2 + x_2^2 + y_1^2}$$

$$\Omega_{\phi} = x_1^2 + x_2^2 + y_1^2$$

Parameter space

- physical range: $x_1 \in [-1,1], x_2 \in [-1,1], y_1 \in [0,1].$
- In a flat Universe: $\Omega_{\text{matter}} = 1 (x_1^2 + x_2^2 + y_1^2) > 0$.
- ⇒ Physical parameter space is upper half of a 3-ball.

Dynamics

Kinetic coupling

$$k_1 = -M_p \frac{\partial_{\phi_1} f}{f}, \qquad k_2 = -M_p \frac{\partial_{\phi_1} V}{V}.$$

In general, $k_i = k_i(\phi_i)$.

Evolution as autonomous system:

The dynamics is given in terms of e-folds ($' \equiv d/d(\ln a)$) by

$${x_1}' = h_1(x_1, x_2, y_1), \quad {x_2}' = h_2(x_1, x_2, y_1), \quad {y_1}' = h_3(x_1, x_2, y_1).$$

Dynamics are completely determined by initial conditions and k_i .

If $k_i = k_i(\phi_i)$, additionally require $\phi'_1 = 6x_1$.

Fixed Points

F	ixed	points <i>x</i>	$x_1'=x_2'=y_1$	$^{\prime}=0$ for	con	stant k_i	
		x ₁	<i>x</i> ₂	<i>y</i> 1	Ω_{ϕ}	ω_{ϕ}	stability
	\mathcal{K}_{\pm} \mathcal{F}	±1	0	0	1	1	unstable
	${\mathcal F}$	0	0	0	0	-	unstable
	S	$\frac{\sqrt{3/2}}{k_2}$	0	$\frac{\sqrt{3/2}}{k_2}$	$\frac{3}{k_2^2}$	0	$k_2^2 \geq 3$
	$\mathcal G$	$\frac{k_2}{\sqrt{6}}$	0	$\sqrt{1-rac{k_{2}^{2}}{6}}$	1	$-1+\frac{k_2^2}{3}$	$k_2 < \sqrt{6}$
	\mathcal{NG}	$\frac{\sqrt{6}}{(2k_1+k_2)}$	$\frac{\pm\sqrt{k_2^2+2k_2k_1-6}}{2k_1+k_2}$	$\sqrt{\frac{2k_1}{2k_1+k_2}}$	1	$\frac{k_2-2k_1}{k_2+2k_1}$	$k_2 \geq \sqrt{6+k_1^2}-k_1$

Fixed Points

F	ixed _l	points <i>x</i>	$x_1'=x_2'=y_1$	$^{\prime}=0$ for	con	stant k_i	
		x ₁	<i>x</i> ₂	<i>y</i> 1	Ω_{ϕ}	ω_ϕ	stability
	\mathcal{K}_{\pm}	±1	0	0	1	1	unstable
	\mathcal{F}	0	0	0	0	-	unstable
	S	$\frac{\sqrt{3/2}}{k_2}$	0	$\frac{\sqrt{3/2}}{k_2}$	$\frac{3}{k_2^2}$	0	$k_2^2 \ge 3$
	\mathcal{G}	$\frac{k_2}{\sqrt{6}}$	0	$\sqrt{1-rac{k_2^2}{6}}$	1	$-1+rac{k_2^2}{3}$	$k_2 < \sqrt{6}$
	\mathcal{NG}	$\frac{\sqrt{6}}{(2k_1+k_2)}$	$\frac{\pm\sqrt{k_2^2+2k_2k_1-6}}{2k_1+k_2}$	$\sqrt{\frac{2k_1}{2k_1+k_2}}$	1	$\frac{k_2 - 2k_1}{k_2 + 2k_1}$	$k_2 \geq \sqrt{6+k_1^2}-k_1$

- The \mathcal{NG} fixed points with $x_2 \neq 0$ exist only for multifield models
- \bullet Non-geodesic field trajectories, ϕ_2 dragged along by $\dot{\phi}_1$

Fixed Points

Fi	Fixed points $x_1' = x_2' = y_1' = 0$ for constant k_i						
		x ₁	<i>x</i> ₂	<i>y</i> 1	Ω_{ϕ}	ω_ϕ	stability
	\mathcal{K}_{\pm}	±1	0	0	1	1	unstable
	${\mathcal F}$	0	0	0	0	-	unstable
	S	$\frac{\sqrt{3/2}}{k_2}$	0	$\frac{\sqrt{3/2}}{k_2}$	$\frac{3}{k_2^2}$	0	$k_2^2 \ge 3$
	\mathcal{G}	$\frac{k_2}{\sqrt{6}}$	0	$\sqrt{1-rac{k_2^2}{6}}$	1	$-1 + \frac{k_2^2}{3}$	$k_2 < \sqrt{6}$
	\mathcal{NG}	$\frac{\sqrt{6}}{(2k_1+k_2)}$	$\frac{\pm\sqrt{k_2^2+2k_2k_1-6}}{2k_1+k_2}$	$\sqrt{\frac{2k_1}{2k_1+k_2}}$	1	$\frac{k_2-2k_1}{k_2+2k_1}$	$k_2 \geq \sqrt{6+k_1^2}-k_1$

- The \mathcal{NG} fixed points with $x_2 \neq 0$ exist only for multifield models
- ullet Non-geodesic field trajectories, ϕ_2 dragged along by $\dot{\phi}_1$
- ullet Only ${\cal G}$, ${\cal N}{\cal G}$ can be accelerating $\omega_\phi < -1/3$
- But fixed points cannot fit $\Omega_{\phi} \sim$ 0.7. Look for transients!

Approaches to finding transients

Cosmological initial conditions

- Start in the past at phase of matter domination.
- $\Omega_{\phi} = 0$ at fluid domination fixed point \mathcal{F} : $x_1 = x_2 = y_1 = 0$.
- Search for evolution into dark energy domination today.

Approaches to finding transients

Cosmological initial conditions

- Start in the past at phase of matter domination.
- $\Omega_{\phi} = 0$ at fluid domination fixed point \mathcal{F} : $x_1 = x_2 = y_1 = 0$.
- Search for evolution into dark energy domination today.

Observable initial conditions

- Start "today" with observable parameters $\omega_{\phi} \sim -1, \; \Omega_{\phi} \sim 0.7.$
- Seems underdetermined, but fixes i.c. to $x_1 = x_2 = 0$, $y_1 = \sqrt{0.7}$.
- Integrate backwards to determine past evolution.
- Trajectory is always viable today, but past has to be explained.

$$S=\int \mathsf{d}^4 x \, \sqrt{-g} \left(rac{M_p^{\,2}}{2}R-rac{1}{2}(\partial\phi_1)^2-rac{1}{2}f(\phi_1)^2(\partial\phi_2)^2-V(\phi_1)
ight)$$

Kähler moduli T in IIB flux vacua:

With
$$T= au+iartheta,\;K=-3\log(T+\overline{T})$$
:
$$\phi_1=\sqrt{3/2}\log(au)\,,\qquad \phi_2=artheta\,; \\ f(\phi_1)=\sqrt{3/2}\,\mathrm{e}^{\sqrt{3/2}\,\phi_1}\,,\quad V(\phi_1)\sim \frac{1}{ au}=\mathrm{e}^{-\sqrt{3/2}\,\phi_1} \\ \Rightarrow \quad k_1=\sqrt{\frac{2}{3}}\,,\qquad k_2=\sqrt{6}$$

Kähler moduli T in IIB flux vacua:

With $T = \tau + i\vartheta$, $K = -3\log(T + \overline{T})$:

$$k_1=\sqrt{\frac{2}{3}}\,,\qquad k_2=\sqrt{6}$$

Kähler potential for chiral superfield X: $K = -p \log(X + \overline{X})$

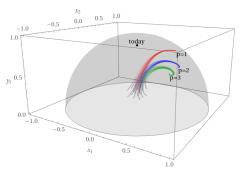
$$k_1 = \sqrt{\frac{2}{p}}$$
, $k_2 = \sqrt{2p}$

Kähler potential for chiral superfield X: $K = -p \log(X + \overline{X})$

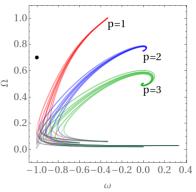
$$k_1 = \sqrt{\frac{2}{p}}, \qquad k_2 = \sqrt{2p}$$

$\begin{array}{llll} 2 & & T_2=\mathrm{Vol}(\Sigma_4^{(2)})+\mathrm{i}\int_{\Sigma_4^{(2)}}C_{(4)} & & \text{Type IIB} & D3/D7, O3/O7 & \text{K3-fibered} \\ \\ 3 & & T=\mathrm{Vol}(\Sigma_4)+\mathrm{i}\int_{\Sigma_4}C_{(4)} & & \text{Type IIB} & D3/O3 & \mathrm{CY}_3 \\ \\ & & & & & & & & & & & & \\ \end{array}$	nal	$\mathcal{M}_{ ext{internal}}$	Sources	Theory	X	р
3	str.	$\mathrm{SU}(3)$ str.	_	Heterotic		1
3	CY_3	K3-fibered CY	D3/D7, O3/O7	Type IIB	$T_2 = \text{Vol}(\Sigma_4^{(2)}) + i \int_{\Sigma_4^{(2)}} C_{(4)}$	2
		CY_3	D3/O3	Type IIB		3
T TY I/E) A MAIL MINE MINE CO						
$Z = Vol(\Sigma_3) + i \int_{\Sigma_3} A_{(3)}$ M-theory KK6/KKO6 G ₂ str	r.	G_2 str.	KK6/KKO6	M-theory	$Z = \operatorname{Vol}(\Sigma_3) + \mathrm{i} \int_{\Sigma_3} A_{(3)}$	7

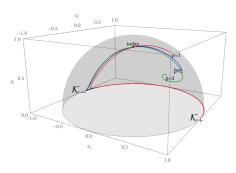
Approach 1: Starting from matter domination



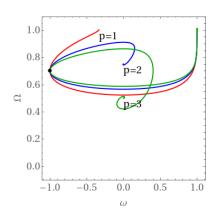
No viable trajectories starting from the matter dominated fixed point \mathcal{F} .



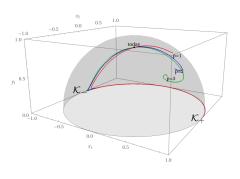
Approach 2: Starting from observed parameters



Trajectories passing through the observed point.



Approach 2: Starting from observed parameters



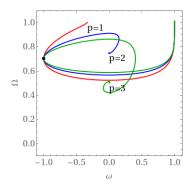
1.0 0.8 p=20.6 0.4 0.2 0.0 -0.50.00.5 1.0 ω

Trajectories passing through the observed point.

- Universal "spine" asymptoting to \mathcal{K}_{\pm} fixed points (in the past).
- No trajectories come close to matter domination $\Omega_{\phi}=0$.

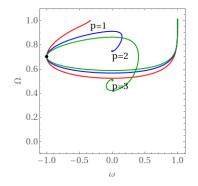
What is matter domination really?

- Def. matter: $\omega_m = 0$
- Is $\Omega_{\phi} \neq 0$ matter dominated, as long as $\omega_{\phi} = 0$?
- Trajectories have $\omega_{\phi} = 0$ in past.



What is matter domination really?

- Def. matter: $\omega_m = 0$
- Is $\Omega_{\phi} \neq 0$ matter dominated, as long as $\omega_{\phi} = 0$?
- Trajectories have $\omega_{\phi} = 0$ in past.



Initial conditions are harder to justify, but maybe not impossible!

Non-universal blow-up modes

- Govern the size of a blow-up (singularity resolution)
- Weak swiss cheese type: $V = \alpha \tau_b^{3/2} \lambda \tau_s^{3/2}$
- For $\tau_b \gg \tau_s \gg 1$: Kähler potential is power law, not logarithm!

$$K = -3\ln\tau_b + 2\left(\frac{\tau_s}{\tau_b}\right)^{\frac{3}{2}}$$

Non-universal blow-up modes

- Govern the size of a blow-up (singularity resolution)
- Weak swiss cheese type: $V = \alpha \tau_b^{3/2} \lambda \tau_s^{3/2}$
- For $\tau_b \gg \tau_s \gg 1$: Kähler potential is power law, not logarithm!

Kinetic terms for canonically normalized blow-up mode

$$\mathcal{L}_{\mathrm{kin}} \, = \, -rac{1}{2}\sqrt{-g}\,\left(\left(\partial\phi_1
ight)^2\,+\left(rac{ extit{M}_p}{\phi_1}
ight)^{2/3}\left(\partial\phi_2
ight)^2
ight)$$

with $\phi_1 \sim (\frac{\tau_s}{\tau_b})^{\frac{3}{4}}$ and $\phi_2 \sim (\frac{\vartheta_s}{i\tau_b})^{\frac{3}{4}}$ the corresponding axion.

$$f(\phi_1) = \left(\frac{M_\rho}{\phi_1}\right)^{1/3} \quad \Rightarrow \quad k_1 = \frac{1}{3} \frac{M_\rho}{\phi_1} \,.$$

Kinetic terms

$$f(\phi_1) = \left(\frac{M_p}{\phi_1}\right)^{1/3} \quad \Rightarrow \quad k_1 = \frac{1}{3} \frac{M_p}{\phi_1}.$$

Potential terms

- Perturbative corrections (string loops, higher derivative effects).
- Depends on the explicit setup, but is always power-law:

$$V(\phi_1) = V_0 \left(\frac{M_p}{\phi_1}\right)^{\pm 2/3} \quad \text{or} \quad V(\phi_1) = \frac{V_0}{C - (\phi_1/M_p)^{2/3}}.$$

$$\Rightarrow \quad k_2 \sim \frac{2}{3} \frac{M_p}{\phi_1}.$$

General power-law models [Cicoli/Dibitetto/Pedro '20]

Power-law Kähler and scalar potentials fall into class of models

$$f(\phi_1) = \left(rac{M_p}{\phi_1}
ight)^{p_1}$$
 and $V(\phi_1) = V_0 \left(rac{M_p}{\phi_1}
ight)^{p_2}$ with $k_1 = p_1 rac{M_p}{\phi_1}$, $k_2 = p_2 rac{M_p}{\phi_1}$.

Hierarchy unnatural?

- Viable trajectories need at least $\mathcal{O}(10)$ hierarchy between p_1 , p_2 .
- In blow-up example, $p_1/p_2=1/2\ll \mathcal{O}(10)$
- Other string examples also fail to produce hierarchy.
- But hard to rule out conclusively.

Conserved currents and Q-balls

Dynamic Q-ball formation

- Our models have a conserved current $J^{\mu}=\sqrt{-g}f^2\partial^{\mu}\phi_2$.
- In such models Q-balls may appear. [Coleman '85; Krippendorf/Muia/Quevedo '18]
- Production of Q-balls screens the dark energy. [Kasuya '01; Li/Hao/Liu '01]
- Must ensure that our models avoid producing Q-balls!

Conserved currents and Q-balls

Dynamic Q-ball formation

- Our models have a conserved current $J^{\mu}=\sqrt{-g}f^2\partial^{\mu}\phi_2$.
- In such models Q-balls may appear. [Coleman '85; Krippendorf/Muia/Quevedo '18]
- Production of Q-balls screens the dark energy. [Kasuya '01; Li/Hao/Liu '01]
- Must ensure that our models avoid producing Q-balls!

Jeans length

Q-balls can only form if

$$0 < \frac{k^2}{a^2} < 3H^2M_\rho^2 \left((4k_1^2 - 2k_1')x_2^2 - (k_2^2 - k_2')y_1^2 \right),$$

leaving a safe wedge in the center of parameter space.

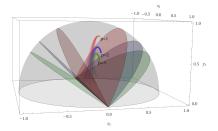
Conserved currents and Q-balls

Jeans length for constant k_i

Q-balls can only form if

$$0 < \frac{k^2}{a^2} < 3H^2M_p^2 \left(4k_1^2 x_2^2 - k_2^2 y_1^2\right),$$

leaving a safe wedge in the center of parameter space.



Implications

- No problem for constant k_i or power-law models.
- May become important if a model has k1/k2 hierarchy.

Conclusions

- Many accelerating models satisfy the dS conjecture.
- But can they model our late time cosmology?
- Multi-field approach natural in string theory.
- Kinetic coupling allows for a steep potential.
- Fixed points don't include our universe. Transients!

Conclusions

- Many accelerating models satisfy the dS conjecture.
- But can they model our late time cosmology?
- Multi-field approach natural in string theory.
- Kinetic coupling allows for a steep potential.
- Fixed points don't include our universe. Transients!
- Universal moduli have viable transients with questionable past.
- Non-universal moduli can't generate necessary p1/p2 hierarchy.

Conclusions

- Many accelerating models satisfy the dS conjecture.
- But can they model our late time cosmology?
- Multi-field approach natural in string theory.
- Kinetic coupling allows for a steep potential.
- Fixed points don't include our universe. Transients!
- Universal moduli have viable transients with questionable past.
- Non-universal moduli can't generate necessary p1/p2 hierarchy.
- Q-balls could ruin the solution. Not a problem in most cases.

Thank you for your attention!

Autonomous system

The autonomous system:

$$\begin{split} x_1' &= 3x_1(x_1^2 + x_2^2 - 1) + \sqrt{\frac{3}{2}} \big(-2k_1x_2^2 + k_2y_1^2 \big) - \frac{3}{2}\gamma x_1 \big(x_1^2 + x_2^2 + y_1^2 - 1 \big) \,, \\ x_2' &= 3x_2 \left(x_1^2 + x_2^2 - 1 \right) + \sqrt{6}k_1x_1x_2 - \frac{3}{2}\gamma x_2 \left(x_1^2 + x_2^2 + y_1^2 - 1 \right) \,, \\ y_1' &= -\sqrt{\frac{3}{2}}k_2x_1y_1 - \frac{3}{2}\gamma y_1 \left(x_1^2 + x_2^2 + y_1^2 - 1 \right) + 3y_1 \left(x_1^2 + x_2^2 \right) \,, \end{split}$$

and the cosmological parameters:

$$\begin{split} &\Omega_{\phi}' = -3\left(\Omega_{\phi} - 1\right)\Omega_{\phi}(\omega_{b} - \omega_{\phi})\,,\\ &\omega_{\phi}' = \left(\omega_{\phi} - 1\right)\left(-k_{2}\sqrt{3(\omega_{\phi} + 1)\Omega_{\phi} - 6x_{2}^{2}} + 3(1 + \omega_{\phi})\right). \end{split}$$