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WHY INTERFACES

▶ Condensed matter: impurities, conformal boundaries
▶ String theory: interfaces/defects ∼ branes, non-geometric

backgrounds

Today we will take a CFT perspective

▶ new (strongly coupled) 3d S-fold CFTs

▶ conformal manifolds with varying SUSY
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CONFORMAL MANIFOLDS

Conformal manifolds are families of CFTs generated by exactly
marginal couplings.

L = L0 + hO , ∆(O) = d , and β(h) = 0 .

Exactly marginal couplings have a vanishing β-function to all
orders! Very stringent, e.g.

COOÕ = 0

Their existence is hard to show in d > 2, except when #Q ≥ 4
and one can utilize non-renormalization theorems.

Leigh, Strassler ’95
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CONFORMAL MANIFOLDS

▶ Do conformal manifolds exist with #Q < 4, in d > 2?

▶ What can we say about the spectral data of local operators along
a conformal manifold?

Recently the latter has been concretely verbalised as

Conjecture II: All CFTs at infinite distance are HS points.

Perlmutter, Rastelli, Vafa, Valenzuela ’21

Where the distance is computed with respect to the
Zamolodchikov metric

|x− y|2d⟨Oi(x)Oj(y)⟩ = gij

Holographically these questions are translated to the properties
of continuous families of AdSd+1 vacua.
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TOP-DOWN HOLOGRAPHY

We use top-down holography to get a better understanding of
the inherently strongly coupled CFTs that we will encounter.

▶ The CFTs arise from a stack of D3 branes at the tip of a
Sasaki-Einstein (SE) cone.

▶ In this talk we specialize the SE5 space to be S5.
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Interfaces and S-folds in
N = 4 SYM
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N = 4 SYM + an Interface
We deform N = 4 SYM with a spatial dependent coupling
(Janus interface).

L = LSYM + LI(y)

Bak, Gutperle, Hirano ’03
Clark, Freedman, Karch, Schnabl ’05

▶ The main difference between the two CFTs is the coupling!

▶ On the interface we preserve conformal symmetry.

▶ No new degrees of freedom are added.
8
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N = 4 + an Interface
The interface operators schematically take the form

LI =
∂ygY M

g3Y M

Tr
[
ψ2 + ϕ3

]
▶ Take gY M to be a Heaviside function
▶ Details of the couplings determine the preserved SUSY

D’Hoker, Estes, Gutperle ’06

N supergroup R-symmetry Flavour
4 osp(4|4,R) so(4)
2 osp(2|4,R) u(1) su(2)
1 osp(1|4,R) su(3)
0 su(4)

A more general class of spatially modulated couplings was
recently studied as well.

Arav, Cheung, Gauntlett, Roberts, Rosen ’20
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New 3d CFTs
Co-dimension one interfaces provide interesting pathways to
the study of new three-dimensional strongly coupled physics.

An important example is the discovery of the T[U(N)] theories
living on the N = 4 interface.

This quiver is the IR-fixed point of

undergoing a symmetry enhancement in the IR.

Gaiotto, Witten (’09, ’10)
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3d S-folds
We compactify the direction perpendicular to the interface,
gauging the diagonal U(N) ⊂ U(N)× U(N), with an N = 4
vector, Chern-Simons level k, and superpotential

WUV = − k

4π
TrΦ2 + Tr(Φ(µH + µC)) →WIR = −2π

k
TrµHµC

we find new 3d S-folds

Its S3 free energy can be computed to all orders in N

FS3 =
N2

2
T +

N∑
j=1

ln(1− e−jT ) =
N2

2
T + f0(T )−

∞∑
k=1

e−kTN

k(1− ekT )
.

Terashima, Yamazaki ’11; Ganor, Moore, Sun, Torres-Chicon ’14;
Gang, Yamazaki ’18; Assel, Tomasiello ’18
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New 3d CFTs

Similar setups can be constructed where the 3d CFT preserves
less supersymmetry (N = 0, 1, 2).

In what follows we focus on the N = 4 S-fold and argue that it
lies on a conformal manifold preserving N = 2 SUSY.

Adding a mass term for Φ in the UV provides the marginal
coupling in the IR

WIR = −2π

k
TrµHµC + λTrµHµC .

Furthermore, our studies show that the conformal manifold is
non-compact and strongly coupled.

All this we do by constructing holographically dual AdS4

solutions in type IIB string theory.
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A Holographic Exploration
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type IIB vs 5d SUGRA
Our starting point is a stack of N D3 branes at the tip of a cone
over S5 describing N = 4 SYM.

▶ The interface breaks some D3 world volume isometries.
▶ Depending on the field theory couplings certain S5

isometries are broken as well.

Solving PDEs in IIB is hard!

Instead, we will consistently truncate the theory down to
five-dimensional, N = 8, SO(6) gauged, supergravity, reducing
the problem to a set of ODEs (easy)!

The consistent truncation allows us to systematically uplift the
lower-dimensional solutions back to type IIB!

Baguet, Hohm, Samtleben ’15
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The 5d Theory

The solutions of interest are described by a handful of scalars,
preserving g ⊂ so(6), dual to the field theory symmetries.

N supergroup R-symmetry Flavour
4 osp(4|4,R) so(4)
2 osp(2|4,R) u(1) su(2)
1 osp(1|4,R) su(3)
0 su(4)

For the sake of concreteness we present the Janus interface that
preserves so(4) ⊂ so(6), and N = 4 supersymmetry.

This truncation leaves five non-trivial scalars ϕa = (α, χ, κ, φ, c).
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The 5d Theory

We are interested in solutions of the form

ds25 = dr2 + e2A(r)ds2AdS4 , ϕa = ϕa(r) .

The BPS equations solving this system are

(α′ − φ′

cosκ)
2 = |∂αW |2

36 ,

χ′(α′ − φ′

cosκ) =
sinh 4χRe(W∂αW )

24 ,

φ′(α′ − φ′

cosκ) =
tanh 4χ cosκ Im(W∂αW )

24 ,

κ′ =(1 + 2 sinhφ)c′ ,

c′ =− 2 tanκ
sinh 2φφ

′ ,

(A′)2 = 1
9 |W |2 − e−2A ,

where W is the superpotential

W = −3

2
(cosh 2α cosh 2χ− i sinh 2α sinh 2χ) .

This system can be solved analytically!
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The 5d Janus Solution

The full solution is determined by in total four integration
constants: I, J , F0, and c0:

I ∼ |gLY M − gRY M | ,
J ∼ |θLYM − θRYM | ,

F0 ∼ gLY M + gRY M ,

c0 ∼ θLYM + θRYM .

-4 -2 0 2 4
-1.0

-0.5

0.0

0.5

1.0

1.5

g r
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N = 4 S-fold
We can see that something special happens when

I = 1 , J = 0 , c0 = 0 ,

All scalars become constant, except φ:

ds25 = dr2 + ds2AdS4 , φ = φ0 + r .

We can compactify the radial direction, but additionally we
have to make φ periodic using an sl(2,R)S transformation

Jk =

[
k 1
−1 0

]
, J†kM(r + r0)Jk = M(r) ,

where k = 2 cosh r0.

The regularized on-shell action is (T = arccosh k/2)

FS3 =
N2

2
T ∼ N2

2
T +

N∑
j=1

ln(1− e−jT )

matching the QFT computation.
18
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N < 4 S-folds
and Conformal Manifolds
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The 3d N < 4 S-folds
Less supersymmetric S-folds are conceptually very similar.

N S-twist GR GF FS3

4 hyperbolic so(4) N2

2 arccosh(n/2)
2 hyperbolic u(1) su(2)/u(1) N2

2 arccosh(n/2)

1 hyperbolic su(3)/u(1)2
√

55

36
N2

4 arccosh(n/2)

1 elliptic so(3)/u(1)
√

55

39
N2

2 2π
(
k + 1

n

)
1 elliptic u(1) 81N2

32
√

70+26
√
13
2π

(
k + 1

n

)
Arav, Gauntlett, Roberts, Rosen, Giambrone, Guarino, Malek,
Samtleben, Sterckx, Trigiante, Cesaro, Larios, Varela, Berman,

Fischbacher, Inverso, Bobev, Gautason, Pilch, Suh, JvM, . . . ’19-21

Because there is no localization computation available for the
N = 1 S-folds it is hard to check their QFT constructions.

▶ The N = 4 and N = 2 S-folds on a conformal manifold!
20
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A conformal manifold of N = 2 S-folds
Holographically we constructed a two-parameter family of
AdS4 solutions dual to the conformal manifold.

Bobev, Gautason, JvM ’21
Guarino, Sterckx, Trigiante ’20

Arav, Cheung, Gauntlett, Roberts, Rosen ’21

As mentioned at the start, the field theory description is given
by the superpotential

WIR = λTrµHµC − 2π

k
TrµHµC .
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A conformal manifold of N = 2 S-folds

The Zamolodchikov metric is

ds2Z =
(1 + 2x2)(dx2 + 2(1 + x2)dy2)

2(1 + x2)2
, RZ =

4(4x4 + 2x2 − 1)

(1 + 2x2)3
.

The conformal manifold appears to be non-compact.

The lowest lying spectrum of operators equals (XY [∆; j; r;F ])

A1A1[2; 1; 0; 0] ,

A2A2[1; 0; 0; 0] ,

LA1[
5
2
; 1
2
;±1; 0] ,

LL[ 1
2

+ β±; 0; 0; 0] ,

LL[ 1
2

+ α; 0; 0;±2] ,

LL[ 1
2

+ γ±; 1
2
; 0;±1] ,

LB2[2; 0;±2; 0] ,

where

α
2

= 1
4

+ 2x
2
+ 4y2

1+x2 , β
2
± =

17+(17±16)x2

4(1−x2)
, γ

2
± =

x2+(x2+2)2+2y2±2x

√
(x2+2)2+2y2

2(1+x2)
.

Non-compact CM without a free point!
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A conformal manifold of N = 2 S-folds
The χ-direction has been shown to be periodic through a 10d
analysis (KK-spectrum).

Giambrone, Malek, Samtleben, Trigiante ’21

The limit x→ ∞ was shown to be singular in 5d supergravity.

ds5 ∼ x−2/3ds2AdS4 + x4/3dr2

Arav, Gauntlett, Roberts, Rosen ’21

The 10d solution is a mess.. Here we show simply the metric in
the x→ ∞ limit:

ds210 ∼f1(θi)
[
x ds2S1 + ds2AdS4 + ds2

S̃5

]
+O(x−1) ,

The remaining fields go as

(B2 + iC2, C4, τIIB) ∼ O(x0) .
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A conformal manifold of N = 2 S-folds
In the x→ ∞ limit we find that x only influences the radius of
the S-fold circle, which holographically controls the CS-level.

Remember the field theory superpotential

WIR = −2π

k
TrµHµC + λTrµHµC .

Does (a sector) become free/topological in this limit?

Duality on the CM involving the CS-level, N , and possibly SL(2,Z)?

Per(χ)/2

?

N = 4
SU(2)

24
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Final Remarks

We showed how 3d S-fold CFTs can be constructed starting
from 4d Janus interfaces.

We constructed a non-compact conformal manifold of N = 2
S-folds, on which the N = 4 CFT is a special point.

Can we conclusively determine the topology of the conformal
manifold?

Supersymmetric localization can compute the free energy
analytic in N

FS3 =
N2

2
T + f0(T )−

∞∑
k=1

e−kTN

k(1− ekT )
.

Are α′ and gs corrections in type IIB supergravity able to reproduce
more than the N2 term?

25
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Thank you
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Extra slides
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We worked in five-dimensional maximal SO(6) gauged
supergravity, and four-dimensional SO(6)× SO(1, 1)× R12

supergravity to find our results.

content... (1)
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What about N = 1 S-folds?
The lack of QFT tools makes it difficult to explain the existence
of the N = 1 S-folds.

N S-twist GF FS3

1 hyperbolic su(3)/u(1)2
√

55

36
N2

4 arccosh(k/2)

1 elliptic so(3)/u(1)
√

55

39
N2

2 2π
(
k + 1

n

)
1 elliptic u(1) 81N2

32
√

70+26
√
13
2π

(
k + 1

n

)
Interestingly it turns out that all known N = 1 S-folds lie on a
conformal manifold.

Guarino, Sterckx ’21
Berman, Fischbacher, Inverso ’21

Bobev, Gautason, JvM ’21

The 3d exactly marginal couplings arise from turning on a 4d
Wilson line on the S-fold circle, breaking the flavor symmetry
down to its Cartan.

29



29

What about N = 1 S-folds?
The lack of QFT tools makes it difficult to explain the existence
of the N = 1 S-folds.

N S-twist GF FS3

1 hyperbolic su(3)/u(1)2
√

55

36
N2

4 arccosh(k/2)

1 elliptic so(3)/u(1)
√

55

39
N2

2 2π
(
k + 1

n

)
1 elliptic u(1) 81N2

32
√

70+26
√
13
2π

(
k + 1

n

)
Interestingly it turns out that all known N = 1 S-folds lie on a
conformal manifold.

Guarino, Sterckx ’21
Berman, Fischbacher, Inverso ’21

Bobev, Gautason, JvM ’21

The 3d exactly marginal couplings arise from turning on a 4d
Wilson line on the S-fold circle, breaking the flavor symmetry
down to its Cartan.

29



30

BRINGING THE JANUS BACK TO 10D

Although working in 5D has its merits, we can go back to 10D.

ds210 = coshχ

[
ds25 +

4

g2

(
ζ2 +

ds24
cosh2 χ

)]
,

τIIB = C0 + ie−Φ =
sinh 2φ cos c+ i

cosh 2φ− sinh 2φ sin c

C2 − τIIBB2 = − 4i

g2
e−iω tanhχ

coshφ+ ieic sinhφ
e3iϕΩ ,

C4 =
16

g4
dϕ ∧ σ ∧ J ,

where ds24 is a Kähler-Einstein metric with Kähler form J , and a
holomrphic (2, 0) form Ω such that

2J = dσ, Ω∧Ω = 2J ∧ J, dΩ = 3iσ ∧Ω, and ζ = dϕ+ σ .
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THE PICTURE AGAIN

S̃E5

D3
τRτL
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BRINGING THE J-FOLD BACK TO 10D

We can do the same for the J-folds

ds210 =

√
5

6

2

3g2
(
4dr2 + 5ds2AdS4 + 6ds24 +

36
5 ζ

2
)
,

τIIB =
cosh(2φ+ r0) + i sinh r0

cosh 2φ
,

C2 − τIIBB2 =− 2i

g2

√
2
3 sinh r0

coshφ+ i sinhφ
e3iϕΩ ,

C4 =
16

g4
dϕ ∧ σ ∧ J ,

where φ = φ0 + r.
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N = 4 SYM

In the N = 4 theory we have the following field content(
Aµ, ψ

i, ϕ[ij]
)
, i, j ∈ SU(4)R, adjoint in SU(N) .

The Lagrangian can be written as

L = Tr

[
1

g2Y M

(
− 1

4
F 2
µν +

(
Dµϕ

ij
)2 − 1

2
ψi /Dψ

i

− ψ
i [
ϕij , ψ

j
]
+
[
ϕij , ϕkl

]2 )
+
θYM

8π2
(F ∧ F )

]
.

The theory is conformal. We break this symmetry partially by
adding a spatial dependent coupling.
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Final remarks

Lastly, we studied different N = 1 S-folds and show that they
lie on a conformal manifold.

Due to the lack of exact QFT tools for such theories it is hard to
explain their origin.

The holographic construction suggests that they should arise
from an R1,2 × S1 compactification of N = 4 SYM, with an
S-duality twist.

The 3d N = 1 conformal manifolds are rare, and no QFT
theorems protect the Kahler potential from corrections.

It will be interesting to see if and how string theory corrections
lift the continuous families of N = 1 AdS4 vacua.
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