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Motivation

Anti-branes are a common ingredient in string theory constructions, which can be
used to induce spontaneous supersymmetry breaking. This results into a
goldstino sector on the world-volume of the membranes, whose dynamics can be
captured by constrained superfields.

The minimal supersymmetric theory describing the low energy dynamics of a goldstino
is the Volkov–Akulov model.
Goldstino self-interactions allow for the possible appearance of composite states.

Then: do these composite states of the goldstino form? If so, what are the
consequences of their formation?

The Volkov–Akulov model

It is a theory of a single goldstino fermion, which we will indicate by Gα, whose action is
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√
f being related to the supersymmetry breaking energy scale.

An equivalent formulation of the model is given in terms of two chiral superfields by
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where

X = X +
√
2θG + θ2FX and T = T +

√
2θλ + θ2F T . (3)

The superfield T plays the role of a Lagrange multiplier that, once integrated out,
imposes the nilpotency condition on X , X 2 = 0.

Composite states detection via the renormalization group

The complex scalar fields of X and T , namely X and T , are related to goldstino
bilinears via equations of motion:
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〈
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〉
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〉
+ . . . . (4)

The fields X and T are initially non-dynamical.
The renormalization group (RG) method applied to the Volkov–Akulov model produces
a kinetic term for T . As a consequence, X and T become dynamical and represent
composite states.

The exact renormatization group approach

A small kinetic term for T , which corresponds to a strong coupling regime, requires a
non-perturbative approach to the RG flow. Then, the adoption of the exact
renormalization group (ERG) technique is needed.
A Wilsonian effective action S[Φ;µ] with cut-off µ can be arranged into a propagator
contribution and an interaction piece as

Sprop. =
∫ d4k
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where CAB(k, µ) is a regularized propagator for the field Φ, which suppresses
high-momentum modes.
The invariance of the corresponding partition function under changes of µ results in the
crucial equation

Ṡint. ≡ −µ∂µSint. =

=
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C̃AB(k, µ)

(
δSint.

δΦA(−k)δΦB(k)
+

δSint.

δϕA(−k)

δSint.

δΦB(k)

)
,
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with C̃AB(k, µ) related to CAB(k, µ) in a prescribed way.
This equation gives a system of coupled ODEs, one for each of the couplings in Sint..

The specific equations and their solutions

To solve the ERG flow equations while preserving supersymmetry we exploit the
supersymmetric local potential approximation (SLPA). We thus project the
equations onto those interactions that can be described by a Kähler potential and a
superpotential, ignoring all contributions due to higher superderivative terms.
The results that we get within the SLPA are trustable for small changes of the Wilson
cut-off. We expect that the qualitative features of our findings do not change, when
following the RG flow longer.
We consider the Kähler potential

Kprop. = c−1XX + c−1T T (8)

and

Kint. = (α− 1)XX + (β − 1)T T + µ−2γXXT T +
1

4
µ−2ζX 2X 2

, (9)

together with the superpotential

W = fX +
1

2
T X 2 . (10)

The quantity c(k/µ) is a regulator function, which we can choose to be, for instance,
c(k/µ) = 1 +

∑
n=1 cn

k2n

µ2n.
Heavily relying on supersymmetry, we determine the ERG flow equations of the
couplings by focusing on the terms that are quadratic in the auxiliary fields FX and
F T . We obtain

γ̇ = −2γ − 2c1 ; ζ̇ = −2ζ − 2c1 ; α̇ = −2N(γ + ζ) and β̇ = −2Nγ , (11)

which, once the boundary conditions at the UV matching point specified by the energy
scale Λ

γ
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are imposed, give

γ = ζ = −c1(1− e−2t) = −2c1t +O(t2) ;
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)
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)
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(13)

where t = log Λ
µ, and N < 0 and c1 < 0 for typical choices of the regulator.

The scalar field T acquires a positive kinetic term.

“Vacuum” structure (in)stability analysis

The central critical point corresponding to the original Volkov–Akulov model develops a
tachyonic instability, signaling goldstino condensation (see Figure 1-left).

As an interesting comment, we observe that, when naively coupling the model to the
(unwarped) KKLT construction, ignoring supergravity interactions, similar results are
obtained (see Figure 1-right).
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Figure 1. This figure presents two illustrative stream-plots of the (negative) gradient of the scalar potential
in the (X ,T ) field space, for t = 0.1. On the right hand side the black contour shows the location where
the gradient vanishes for the real component of the additional KKLT Kähler modulus.

Conclusions and Outlook

The pure Volkov–Akulov model studied through the RG flow technique has an
instability towards goldstino condensation, which seems to persist even including higher
order corrections.

Further investigations are in order! For instance:
What is the endpoint of this instability? We need to go beyond the SLPA.
What comes out from a well-posed supergravity analysis? We need a
supergravity-consistent regulator.
As far as a stringy description of a D3/O3 system is concerned, does the anti-brane
survive or annhilate?
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