Supersymmetry breaking deformations and phase transitions in five dimensions

Matteo Bertolini*, Francesco Mignosa[†] SISSA & INFN, Trieste, Italy

*bertmat@sissa.it, [†]fmignosa@sissa.it

IRTUT

1. Introduction

In d = 5 gauge theories are non-renormalizable, with dimensionful gauge coupling $[h] = [1/g^2] = 1$. However, in presence of $\mathcal{N} = 1$ SUSY, it was shown [1] that many of these theories admit UV fixed points which are interacting SCFTs. Moreover, many string theory constructions [2, 3] are known for these theories and a large zoo of SCFTs was discovered. In absence of SUSY, however, it is difficult to understand CFTs in 5d. This gives rise to an important question:

Are there non-SUSY CFTs in d = 5?

2. Soft SUSY breaking

Start from known SCFTs and deform it breaking SUSY softly.

 \widetilde{m}

4. pq-web constructions

Type IIB string theory: (p,q) bound states of p D5 and q NS5 branes along 01234 and (p_i, q_i) in (x, y).

SU(2) SYM theory:

- Topological global symmetry $U(1)_I$;
- $SU(2)_R$ symmetry;
- UV fixed point at $1/g^2 \rightarrow 0$: E_1 theory.

E_1 theory:

- $U(1)_I$ is enhanced to $SU(2)_I$;
- Higgs branch $\mathbb{C}^2_{\mathbb{Z}_2}$ opens up.

Soft SUSY breaking of E_1 theory [4]: source lowest component of flavor current multiplet $\mu_{(ij)}^{(ab)}$:

- (ab) and (ij) fundamental indices of $SU(2)_I \times SU(2)_R$: source breaks $SU(2)_I \times SU(2)_R \rightarrow U(1)_I \times U(1)_R;$
- Breaks SUSY and conformality $\delta \mathcal{L} = \tilde{m} \mu_{(12)}^{(12)}$ with $[\tilde{m}] = 2$.

Deformation of SU(2) SYM: flow to SU(2) pure YM with CS levels for $U(1)_I \times U(1)_R$. **Different CS levels between** h > 0 and h < 0: phase transition on the \tilde{m} axis.

Non-SUSY CFT on the \tilde{m} axis?

 $SU(2)_R$ symmetry: $SO(3)_{789}$ isometry of Ddirections.

 $\mathcal{N} = 1$ junction: (p_i, q_i) branes meet at a point with

$$\sum_{i} p_i = \sum_{i} q_i = 0, \ \tan \theta_i = p_i / q_i$$

5d $\mathcal{N} = 1$ field theories: D5 branes suspended among (p,q) branes.

7-branes: at the end of (p,q) prongs (red), transverse to (x, y), host flavor symmetry.

SU(2) SYM: two D5 branes between (1,1)/(1,-1) junctions with $\Delta x \sim h$

3. Higgs branch instability

 E_1 Higgs branch: parametrized (locally) by a free half-hypermultiplet H_i^a in the fund. of $SU(2)_I$. **EFT on the Higgs branch**: deformation is $\mu_{(ij)}^{(ab)} \sim H_{(i}^{(a}H_{j)}^{b)}$: Symmetry broken phase

- Tachyonic mass for H_2^1 ;
- NLSM phase: $U(1)_I \times U(1)_R \to U(1)_D$.

Robust under quantum corrections [5]. Finite coupling $h \neq 0$: mass for $H_2^1 \sim h^2$, resolution of the instability and symmetry restoration for $h^2 \sim \tilde{m}$

Non-SUSY CFT at $h^2 \sim \tilde{m}$?

$1^{st}/2^{nd}$ order phase transition $\mathsf{YM}_{2,3/2}$ YM _{-2,-3/2} SYM SYM $YM_{-2,3/2}$ YM_{2,-3/2}

6. Conclusions

The SUSY breaking deformation acting on the Higgs branch EFT introduces a tachyon mass for one scalar, leading to an instability. Its condensation breaks the $U(1)_I \times U(1)_R$ symmetry down to its diagonal, leading to a NLSM phase at strong coupling.

prongs (blue).

VEV of hyper = position of (1, 1) brane segment in \mathbb{R}^{789} .

5. pq-web deformation

 \tilde{m} deformation: rotate by α two right prongs of the pq-web (outside the plane).

 E_1 theory:

- $SU(2)_I \times SU(2)_R \to U(1)_I \times U(1)_R;$
- Web is no more SUSY;
- Higgs branch: (1,1) string is tachyonic ~ $-\alpha/l_s^2$.

At leading order, a finite gauge coupling stabilizes the scalar, leading to a second order phase transition at $h^2 \sim \tilde{m}$ between the NLSM and the YM phases.

Also a string theory construction confirms this expectation.

Still second order taking into account corrections?

7. References

[1] N. Seiberg, Phys. Lett. B **388** (1996), 753-760.

[2] O. Aharony, A. Hanany and B. Kol, JHEP **01** (1998), 002.

[3] D. R. Morrison and N. Seiberg, Nucl. Phys. B 483 (1997), 229-247.

[4] P. Benetti Genolini, M. Honda, H. C. Kim, D. Tong and C. Vafa, JHEP 05 (2020), 058.

[5] M. Bertolini and F. Mignosa, JHEP **10** (2021), 244.

SU(2) SYM:

- Fermions and scalars on D5 gapped by rotation;
- Positive mass $\sim h^2$ for (1, 1) string due to stretching.

Massless tachyon at $h^2 \sim \tilde{m}!$

Corrections from string theory?

