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Motivation

o Muons are important signature for the physics programme of the ATLAS experiment at the LHC

— Electroweak studies with W & Z bosons, Higgs boson measurements, searches for new phenomena...

— Muon trigger signatures contributed ~ 10% of the total 100 kHz bandwidth of the Level-1 hardware trigger (L1)
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Outline

1. ATLAS muon spectrometer (MS) and RPC detector

2. ATLAS L1 muon barrel trigger

3. Muon spectrometer upgrades for the High Luminosity LHC (HL-LHC)
4. Neural network regression model for RPC muon trigger

5. FPGA implementation and simulation
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ATLAS muon spectrometer (MS)

o 2 fast detectors for L1 trigger with position resolution of ~ 1 cm:

— Resistive plate chambers (RPCs) in the barrel region (|n| < 1.05) - subject of this talk

— Thin gap chambers (TGC) in the endcap region (1.05 < |n| < 2.4)

— Fast measurements of muon transverse momentum (p7) within the 2.1 us latency of the L1 trigger

o 2 precision detectors for high-level trigger (HLT) and offline muon reconstruction:

— Muon Drift Tubes (MDT) for |n| < 2.7 with position resolution of ~ 80 um

— Cathode Strip Chambers (CSC) — replaced with New Small Wheel detectors
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Resistive Plate Counters

o RPCs were developed by Santonico and Cardarelli in early 80s

Careful study of different designs and many materials to arrive at a working prototype

o Two parallel electrodes producing high uniform electric field

Free electron — avalanche — streamer

o High bulk resistivity reduces surface area for ionisation discharge — suppresses streamers
— RPCs use phenolic resin known as bakelite - first synthetic plastic invented in 1907

— O(100 Hz/cm?) counting rates and O(1 ns) time resolution

o RPCs are low-cost detectors covering large surface areas and using gas at room pressure
— RPCs are used at the LHC by the ATLAS and CMS muon trigger systems
— Multi-gap RPCs are used as time-of-flight detectors, e.g. reaching ~ 40 ps resolution with 10 gaps for ALICE
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ATLAS Resistive Plate Chambers

o Parallel resistive plates (bakelite with 2 X 10 Q- cm) are separated by 2 mm with insulating spacers
o Induced signal is read out using orthogonal 1 and ¢ copper strips with 23-35 mm pitch

o ~ 1 ns total time resolution — excellent separation of proton bunches that are 25 ns apart

o 320 MHz clock for detecting raising edge of the amplified avalanche signal — 3.125 ns wide time bins

o RPC operate in avalanche mode with average applied voltage of 9.6 kV — working at the efficiency plateau
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o Non-flammable low-cost gas: tetrafluorethane CoH2F4(94.7%), iso-butane C4H1(5%), sulphur hexafluoride SF¢(0.3%)

o This mixture is a potent greenhouse gas — currently being phased out in EU — raising costs and environmental impact
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ATLAS RPC detector

o 3 concentric cylindrical shells of double-layer (doublet) chambers located at radii of 7, 8 and 10 meters
o ~ 3700 gas volumes with the surface area of ~ 4000m? with ~ 360k readout strips

o Provide 6 measurements in bending (r, z) plane and 6 measurements in non-bending (x, y) plane

Non-bending (x,y) plane - RPC ¢ strips Bending (r, z) plane - RPC 7 strips
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Performance of RPC detector with proton-proton collision data at 13 TeV
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LHC delivered a half of the originally designed number of collisions
— Study RPC detector performance to check for possible aging effects

— RPC performance paper using 2018 data: JINST 16 (2021) P07029
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http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/MDET-2019-01

RPC detector response

o Measure RPC detector response with offline probe muons produced in pp collisions
— Use Z boson decays to 2 muons - one muon is tag and second is probe
— Propagate probe muons in magnetic field to predict an impact point on the RPC surface
— Offline probe muon candidates are reconstructed using primarily the MDT detector

o Detect hits associated with muon induced avalanche — hit time and multiplicity

— Hit is a signal induced in one strip which is above a tunable threshold of the front-end electronics

Calibrated hit time for one RPC module Hit multiplicity in response to muon passage for one RPC module
Zero corresponds to time of pp collisions Efficiency is a fraction of events with at least one detected hit
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RPC detector efficiency

o Muon detection efficiency = probability to detect avalanche with > 1 hit

— Measured using events containing a muon predicted to pass through a given chamber

— Gas gap efficiency = probability to detect a muon induced avalanche using either 1 or ¢ strips

o Average RPC detector efficiency to detect a muon is ~ 94%
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— Excellent detector stability during data taking in 2018

— About 10% of RPCs were off in 2018 due to gas leaks - these chambers are not shown below
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RPC counting rate [Hz/cm?]

RPC counting rates and ionisation currents

o Measured RPC ionisation currents and counting rates as a function of instantaneous luminosity

— Scale linearly with instantaneous luminosity, as expected

o Also measured the mean avalanche charge = I /Rcounts =~ 30 pC

— Consistent with test beam results — confirmed with the full RPC detector

Counting rates (Rcounts) at different radii
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RPC integrated charge limits

o RPC detector was certified for up to 0.3 C/cm? integrated charge
— This corresponds to about 10 years of LHC operations at O(100 Hz/cm?), equivalent to 30 uA/m?

— Some chambers at high || will exceed this limit for High Luminosity LHC — reduce HV and replace some RPCs
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RPC detector time resolution

o Measure time resolution using time differences of muon signals recorded by two parallel RPC layers

— Two layers are separated by ~ 20 mm — negligible muon time-of-flight

— Subtract time resolution component of the front-end electronics which is measured in-situ

o Average measured RPC time resolution: chpC/ﬁ ~1lns

— Small differences between 1 and ¢ time resolution is due to differences in construction
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Search for slow-moving stable charged particles

o Time-of-flight and dE/dx energy loss are used to search for heavy stable charged particles

— RPC is the most sensitive detector for measuring muon time-of-flight

o Search for production of supersymmetric particles (stau, chargino, gluino, R-hadron)

— Sensitive to other models producing heavy stable charged particles

RPC has most precise 3, resolution of ~ 2% Exclusion limit on stau production
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ATLAS L1 muon barrel trigger
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Level 1 muon barrel trigger

o L1 muon barrel trigger uses RPCs to detect muon
trigger candidates at 40 MHz rate

— Custom-built on-detector electronics making
pT MBT decision within 2.1 us

RPC 3
low p,

RPC 2 (pivot)

— 3328 detector regions with An x A¢ ~ 0.1 x 0.1

o 3 low p7 thresholds:

— 3/4 coincidence within trigger road in the two inner
doublet layers (RPC1 and RPC2)

o 3 high pr thresholds:

— Require highest low-pt trigger plus 1-out-of-2
coincidence in the outer doublet layer (RPC3)

SV-LLO1VO1

15m
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Confirm channel

L1 muon barrel trigger: coincidence matrix

o Coincidence matrix ASIC (CMA)

— Application-specific integrated circuit (ASIC) to check coincidence of hits between two RPC layers within a cone

— 6 programmable roads (cone sizes) correspond to 6 trigger thresholds for muon pr

High-p7 MU20 road for bending 7 coordinate
Road width is determined by muon curvature in magnetic field
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Confirm channel

High-p7 MU20 road for non-bending ¢ coordinate
Road width is determined by RPC strip width
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L1 muon barrel trigger efficiency

Level 1 muon barrel trigger: efficiency

o MU20 is the primary L1 muon trigger threshold for selecting muons with pr > 20 GeV for physics data taking
— Highly efficient for detecting muons produces in decays of W and Z bosons
— RPC acceptance holes and detector inefficiency lead to the efficiency plateau at 70% for MU20 trigger

Steepness of the efficiency curve determines trigger rates — dominated by muons with mismeasured pr

o Steepness of the efficiency curve determines trigger rates

— Accepted MU20 events are dominated by low-pr muons produced in bb + cE events
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L1 muon barrel trigger: (in)efficiency and rates

o RPC acceptance holes and detector inefficiency lead to the efficiency plateau at 70% for MU20 trigger
— Will install three new RPC layers in the inner barrel region for HL-LHC operations to increase acceptance

o RPC muon trigger rates are dominated by low-p7 muons with mismeasured momentum

— New Small Wheel detectors will reduce the endcap muon trigger rate by a factor of ~ 3

Barrel RPC muon trigger rates would then contribute a significant fraction of L1 events

— Our study aims to improve pr resolution of the future RPC trigger by using a neural network regression

MU20 trigger efficiency in (¢, z) plane
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Muon spectrometer upgrades for High Luminosity LHC
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Muon spectrometer upgrades for High Luminosity LHC

o Current RPC:
— 6 layers with X ¢ grid of 3 cm wide strips
— Custom ASICs for muon trigger electronics y [m]

— Total L1 bandwidth is 100 kHz
Precision MDT

RPC trigger
— L1 latency to process an event: 2.1 us chambers chambers
TGC
. Thin-gap trigger chambers
o After HL-LHC upgrades in 2025~2026: RPCs

— Higher back d — higher tri t
igher backgroun igher trigger rates Sl MDT

chambers

— 3 new inner RPC layers with better time resolution
— Thin-gap RPCs in inner barrel (BI)

— L1—L0: 1 MHz bandwidth & 10 us latency

I -

— New FPGA-based electronics for LO muon trigger 0 5  New 10 15 20z [m]
small wheel

— MS Phase-2 Upgrade Technical Design Report

— TDAQ Phase-2 Upgrade Technical Design Report
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2017-017/
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FPGAs in future ATLAS trigger system

o Field-programmable gate array device (FPGA)
— Integrated circuit configurable after manufacturing

— Programmable logic blocks and interconnects

— Use software to programme computing hardware

o LO muon trigger:
— Input: ~ 0.1 MB at 40 MHz =~ 4TB/s

— Fixed LO muon latency ~ 4 ps — too fast for CPUs

— Use FPGAs for hardware trigger algorithms

o High-level software-based trigger system (HLT) :
— Input: ~ 2 MB at 1 MHz

— Partial event reconstruction in regions of interest

— R&D to use FPGAs to accelerate HLT algorithms
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Neural network regression model for RPC muon trigger
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Neural network regression model: goals

1. Our first goal is to measure muon q/pt in order to improve |pr| resolution of the RPC trigger
— ldea is to include muon charge g — narrower trigger road — better pr resolution and smaller background

— Essentially, we use the neural network regression model to fit q/pr

2. Design requirements
— Aim for fast enough network with small FPGA resource usage << resources of proposed XCVU13P FPGA
— Aim for neural network latency << 10 us latency of the future LO trigger system

— If these goals can be achieved, neural networks can be also used for new exotic triggers - long lived particles, etc

3. Advantages of using neural networks for hardware trigger
— Machine learning algorithms allow to reach higher signal efficiency and smaller background acceptance
— Same circuit can be used for different detector elements — differences encoded via training weights

— Same circuit can be used for different triggers, for example to trigger on long lived particles

o Collaboration with Prof. Changqing Feng, and Wenhao Dong, Wenhao Feng, Kai Zhang, Shining Yang
— Preliminary results reported at CHEP 2021, today showing updates from our upcoming paper

— Ours is different approach than Convolutional Neural Networks — presented at CHEP 2019 by Stefano Giagu

Study of FPGA-based neural network regression model Rustem Ospanov
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https://indico.cern.ch/event/948465/contributions/4323891
https://doi.org/10.1051/epjconf/202024501021

o RPC detector toy model for first studies:

— Model existing RPC with perfect acceptance
(for easier comparisons with ATLAS data)

— Uniform 0.5 T toroidal B-field

— 6 RPC layers with 3 cm wide strips

— Only bending (1) detector view

— 95% efficiency to produce muon hit

— 25% prob. to produce 2-strip muon cluster
— 0.1% prob. per strip to make noise hit

— No detector material (multiple scattering is

small because of the air-core toroids)

o Muon simulation parameters:
— Flat muon p7: 3 to 30 GeV
— Flat muon angle: 50 to 85 degrees to z-axis

— Python code in GitHub:
https://github.com /rustemos/Muon TriggerPhase2RPC

Study of FPGA-based neural network regression model

RPC toy simulation model

RPC toy simulation
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https://github.com/rustemos/MuonTriggerPhase2RPC

Candidate muon reconstruction

10.0
1. In each single layer, reconstruct nearby
contiguous hits as one cluster
95
2. In each doublet layer, merge overlapping
single-layer clusters into one super-cluster
2.0
3. In RPC2 doublet layer, draw a straight line
through each RPC2 super-cluster (seed line)
£ 8.
3.1 In RPC1 and RPC3 doublet layers, select g >
super-cluster closest to this line =
2
&
3.2 If the selected super-clusters are within +20 8.0
strips to seed line, make a muon candidate
o With a window of 420 strips to make candidates, 75
muons with pr < 3 GeV bend outside this window
0 2 candidates when a noise hit is reconstructed as a 7o
muon cluster
6.5
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RPC toy simulation
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Candidate muon reconstruction: muon deflections

o Deflections from the straight line are due to muon curvature in the magnetic field

— Computed with respect to the straight line from the collision point (origin) to the RPC2 seed cluster

o RPC3 deflections from the seed line are plotted below as a function of muon gpt
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Muon candidates

0

0

Neural network inputs

o 3 inputs for the neural network training:

1. RPC2 seed cluster z position (gives muon angular direction to NN)
2. RPC1 cluster Az to seed line for |Az| < 0.15 m
3. RPC3 cluster Az to seed line for |Az| < 0.6 m

— Using differences improved NN convergence and performance

z position of RPC2 seed cluster

RPC1 differences between zgj,ste, and seed line

RPC3 differences between zgj,ste, and seed line
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Neural network regression model: design

o Scan several network architectures

— Select 3 hidden layers with 20 nodes each & Rel U activation

o Network size is driven by RPC resolution with 3 cm wide strips

— Little benefit from a larger network size Hidden Layer  Hidden Layer  Hidden Layer
20 Nodes 20 Nodes 20 Nodes

Loss function vs. training epoch

o Linear loss function to improve training convergence

— Mean of |differences| between simulated and predicted q/pt ° \

o Network training with PyTorch:

— 100k events without noise to improve convergence & performance

Total loss

0 500 1000 1500 2000 2500 3000
Epoch
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Neural network performance

o Excellent performance for predicting q/pr for pure muons

— Noise p shown in orange
— Evaluated with statistically independent events

— Contributions from noise muons are small

Also developed quality criteria to suppress noise muons
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Neural network performance: trigger efficiency
o Compute efficiency for selecting muon candidates with pr > 20 GeV:

— Compare to MU20 trigger efficiency in data as shown earlier

— Toy simulation has perfect acceptance — scale efficiency curve to match the data plateau

o Obtained much steeper efficiency curve than data - potentially leading to lower muon trigger rates

— Missing many effects present in the real RPC detector — still looks interesting enough to study further...

Relative pT error vs. true q/pt

Achieved about 20% p7 resolution at 20 GeV
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Study of FPGA-based neural network regression model

FPGA implementation and simulation

Rustem Ospanov
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FPGA implementation

o Implemented the full neural network regression model in Vivado HDL
— Data processing logic not yet implemented - important for final prototype

o Serial data pipeline between layers
— Reduce a number of connections between layers using distributor — smaller latency
— 5 clock cycles for signal handshake, final adder & ReLU operations and transmission

o Process in parallel 20 neurons of each layer

— Processing element (PE) implements logic for one neuron node — next page

24 Telk 1 Telk 2 Telk
Layer Bus Outy Output Handshake
Input Data[15:0] 1 Telk 1 Telk PE #0 |—> - Outo odd Master)
—_— ou, | ™ [Otoeen
Laver Bue PE #1 5 O | Outron
PE_Data S | out
Input = . g |—teen, i v, | Outhodd | » 2 | i out :
] > > put Data[15:0]
Weight[15:0] | - Handshake ||PE_Num Dlstr'lbutcr =, . S | out s o
e e [oman| O w| o g e R €
— _ctrl c A
valid & [ Outio.caa valid
Ready = [COutio even Ready
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FPGA implementation: neuron processing element

o Neuron node is implemented in processing element (PE):

— Output = ReLU(3"%, x; - weight; + bias)

Processing Element (PE)
— Process serially 20 data inputs from the previous layer
Data Bus
— Latency = (Ninput +4) X Atclock = 24 X Atclock ! llnpu!Data
Layer Address o Wite
. . ress
o Multiply-add-accumulate (MAC) unit: Bus o MAC out,
. . RAM  Read | VeSS
- Implemented using one digital signal processor (DSP) WRctl| o P

- 3 clock cycles for multiplication and 2 clock cycles for addition

- Odd/even inputs are processed independently: IA; « W; + ACi_»

| PE simulation

| |
" : T r 5,626,250 - IS
Begin 5.5«3.15« ns | | End
5, %50 ns ‘5, *5 ns ‘5, 590 ns ‘5, 595 ns

5565 ns | 5,570 ms | 5,575 ns 00 ns 5,005 ns  5,610ms  5,015ms 5,620 ns @5 ms 5,030 s
W fo_valid F7 ) | [ | [ ‘
> W data_A[15:0] 000 | 0000 “/01b1 ' 005¢ ' 03ba | 00b0 /0165 0140 } 000c 0000 % 01a8 ' 003d 0000 3 0400 10000 0000
— s B (=== | —} : = e e e =
> W data_B[15:0] 00da  {£fdd {0123 | feb {0054 ) ££OF | 00b4 { ££8b | Ff4a {0050 ) £57 b 10094 /0043 | ££6d | ££c5 | 00b2 | 00b6 ; 0000 g 00ad
> W data_C[35:0] 000000000 : Veee Y ooo T'£ef 000 fEf (fEf (f£f (f£f (000 fff {000 000000000
> W data_P[35:0] 000000000 0 | 000000000 | 6% Y000 |#Ff 000 ¥ y B VEEE Y £6F Y £6f ) £6f 000 Y £Ef § 000 000 100000000C
T T  E—— s i s s s s ———— 2 I
. AAAA:. ... A A
A 0dd sum sequence | | | .
[ >l e > The final two results
A Even sum sequence Umul:3clks  'add: 2 clks!
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FPGA implementation: latency and resource usage

m Input Data
o Latency for the full network: 98 clock cycles Weight . .
y y Hidden Layer Logic
245 ns @400 MHz << 10 us latency of LO trigger system Z (Latency: 12T, Dead time: 7Tq()
o Deadtime for the full network: 24 clock cycles M

60 ns @400 MHz < 3 LHC bunches = 75 ns Weight

)

o Resource usage for implementation on Xilinx FPGA XCKUO060:

Hidden Layer Logic
(Latency: 29T, , Dead time: 24 T)

LUTs [ Registers [ DSPs M
9949 (3.15%) | 10257 (1.55%) | 68 (2.36%) .
Weight . .
Hidden Layer Logic
o This corresponds to ~ 0.5% of resources of XCVU13P FPGA (Latency: 20T , Dead time: 24T
— 32 such devices will be used for muon barrel trigger upgrade M
Weight

o Much lower resource usage than hls4ml with x3 latency

— Latency can be further reduced by using more DSPs
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Qutput Layer Logic

(Latency: 28Tk, Dead time: 24T )

U Output

35



https://arxiv.org/abs/1804.06913

FPGA implementation: fixed point arithmetic

o Our FPGA implementation uses 16-bit binary fixed-point numbers
— Scan several options for fractional part precision
— Compute relative pr error between full precision and fixed-point precision - plotted below

— Chosen 10 bits for the fractional part and 6 for the signed integer part

Fractional part: 9-bit
200 Fractional part: 10-bit
Fractional part: 11-bit
150
n
2
c
3
S 100
50
0 10-° 1074 10°° 1072 107! 10°

Relative error
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100*(p$PGA ~ p$ython)/p$ython[%]

FPGA simulation

o Full neural network circuit has been tested using simulation:

— Simulation test project was developed using Questa Advanced Simulator and SystemVerilog

o Compare results from PyTorch and FPGA simulation for the same events:

— Percent level errors from using fixed point 16-bit arithmetic

— Efficiency curve for the FPGA implementation is nearly identical that obtained with PyTorch

-20 0 20
Predicted p®"""[GeV]

40
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Potential applications for FPGA-based neural networks

o HL-LHC searches for long lived particles (LLPs)
— L1 trigger was optimised for detecting SM particles

— FPGAs allow development of dedicated exotic triggers

— Can neural networks be used to trigger on exotic signatures?
LLP decays, slow-moving LLPs, highly ionising LLPs

o Hardware accelerators for ATLAS High Level Trigger (HLT)

— HLT runs on a large CPU farm that will process events
accepted by LO at 1 MHz rate

— Is it possible to use FPGAs or GPUs to accelerate
CPU-intensive (track) reconstruction steps?

— Ongoing R&D to answer this question by 2025, plan to use
commercial FPGA or GPU cards plugged in PCle slots

— Main points: cost, power, cooling, flexibility, usability

Study of FPGA-based neural network regression model
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Summary and outlook

o Effective trigger selection of muon candidates is crucial for the ATLAS physics programme

o Excellent performance of the ATLAS RPC detector and L1 muon barrel trigger with 2018 data

o Extensive muon spectrometer & trigger upgrades are planned for the HL-LHC

o All new FPGA-based LO muon trigger electronics will allow more sophisticated trigger algorithms

o We developed resource efficient FPGA-based neural network regression model
— Regression model is trained with toy RPC simulation to measure muon q/pr
— Promises better performance than the current L1 system — steeper muon efficiency curve

— Implemented this neural network in FPGA code: 245 ns latency and very low resource usage

o Results look promising and warrant further studies using more accurate simulation

— Plan to develop dedicated triggers to search for new long-lived particles using the muon spectrometer
Thank you for your attention!
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Trigger timing calibrations

» RPC hits (muon signals) are calibrated online with 3.125 ns step

— More than sufficient to identify individual LHC bunch crossings with 25 ns spacing

» 99.7% of muon candidates arrive within expected 25 ns time window

» Excellent stability of timing calibrations during data taking period

=
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10

1072

Fraction of events / bin

107
10

10°°
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Data 2015
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-2

-1.5

o Lot

-1 05 0 05 1 15
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RPC trigger efficiency is reduced by ~

20% by detector support structures

1
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RPC trigger efficiency is reduced by another ~ 10% by inefficient modules (left plots)

ATLAS, Run 358395, |5 = 13 TeV, 0.72 fb™
Z — pp probe muons, RPC3, gas gap 1

15" &
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HL-LHC studies

RPC upper limit on current density is 30uA/m? for HL-LHC at £ = 7.5 x 103%cm—2s~1

Extrapolate current LHC data to high luminosity to study expected performance

— Chambers with smaller radius and at high |n| will exceed these limits

— Plan to reduce HV to 9.2 kV and decrease front end thresholds to regain ~ 10% efficiency

Scan FE discriminator thresholds at 9.6 kV (nominal) and 9.2 kV (proposed for HL-LHC)

RPC detector currents at different |7| stations

versus instantaneous luminosity
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RPC detector efficiency
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RPC toy simulation: hit multiplicity

— On average, about 9 total hits per event

— On average, about 2 noise hits and 1.8 cluster hits

Study of FPGA-based neural network regression model
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Neural network simulation: cluster multiplicity
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Neural network simulation: super-cluster position differences

o Muon candidates:
— Require > 1 clusters per RPC1, RPC2 and
RPC3
— Make muon candidate for each RPC2 (seed)
cluster

— Draw line through each RPC2 seed cluster

o Clear correlations between pr and Az for muons
without noise hits

o As expected, random deviations for muons
containing noise hits
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Candidate muons

o On average, we reconstruct 1 muon candidate per simulated event
— 0 candidates when one doublet layer is inefficient
— 2 candidates when a noise hit is reconstructed as a cluster

— In later plots, noise muon candidate (noise ) contains at least one noise cluster
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Training events with noise

Total loss
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Prediction(1/Gev)
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FPGA implementation: multiply-add-accumulate (MAC) unit

o MAC is implemented using one DSP with 3 clock cycles for multiplication and 2 clock cycles for addition

o Odd and even input data elements are processed in parallel and independently: IA; x W; + AC;_»

> wdata_P(350)

Input Multiply-add Output Input Multiply-add Output
o e o lA; A o0 elA; IA;
o oW W, 0o oW W
B —
Next Clock
Cycle
5 Even Odd
D Register . Sequence . Sequence
IA: input activation W: weight AC: accumulated result
] 1 I
Begin [ 1 I End
500 ns  5%05ns| 50ns| S5 ns  SPons  SPoac 550w 5B S00ns  S0Swe 500 S05n 500w S 5,00 m
ek I
v B N 1 S | o Pt | B e A i — —
> wza A150) 0000 O1b1 0052 04 | o060 0165) 0000 0140/ 000c {0000 ) 01a8 0034 | 0000 0400 %000
> waata_B150] €€4a 0123 | tfab | 0054 FFOF | 00V4 ) £60b | £Edx 005 | 157 | 003E | OLZT €T ) €T | 003d | 00a3 ) £Fod b | 00h2 | 00bo C .
> W data_CI350) 000000 T “Yee (000 Ieee [000 ) €66 (000 {€Ef Jefe [ffe (€66 ) €66 ) €16 (€€ (000 | ect 200000000
. “oo0000000 | €1t ) 000 (1€ 000 {£rt )00 ) re |16t {frt ) efe \ee {re | eie oo )ttt 000000
T ) = r T T T T T

A\ 0dd sum sequence
———

t
o0 )
¥
|
|

| | |
A Even sum sequence muli3clks  add: 2 clks!
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r[m]

Neutron equivalent flux
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Simulated dose and particle flux

r[m]

1 MeV Neutron Equivalent Flux (Si) [cm'ﬁ

Hadrons flux

z [m]
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HL-LHC upgrades of RPC detector and trigger

o For HL-LHC data-taking, RPC will provide up to 9 measurements of n X ¢

o Inner barrel RPCs will increase detector acceptance

o MDT will be included in hardware muon trigger — refine pr measurement for candidates accepted by RPC

o Order of magnitude better time-of-flight resolution with new on-detector electronics and faster thin-gap RPCs
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BO RPC ‘\
FELIX
BARREL
DCT Jommmmmmny SECTOR MUCTPI
LoGic
BM RPC / I
MDT
TRIGGER PROCESSOR
Bl RPC
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