
Study of FPGA-based neural network regression models
for the ATLAS Phase-II barrel muon trigger upgrade
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Motivation

o Muons are important signature for the physics programme of the ATLAS experiment at the LHC

– Electroweak studies with W & Z bosons, Higgs boson measurements, searches for new phenomena...

– Muon trigger signatures contributed ∼ 10% of the total 100 kHz bandwidth of the Level-1 hardware trigger (L1)
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Outline

1. ATLAS muon spectrometer (MS) and RPC detector

2. ATLAS L1 muon barrel trigger

3. Muon spectrometer upgrades for the High Luminosity LHC (HL-LHC)

4. Neural network regression model for RPC muon trigger

5. FPGA implementation and simulation
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ATLAS muon spectrometer (MS)

o 2 fast detectors for L1 trigger with position resolution of ∼ 1 cm:

– Resistive plate chambers (RPCs) in the barrel region (|η| < 1.05) - subject of this talk

– Thin gap chambers (TGC) in the endcap region (1.05 < |η| < 2.4)

– Fast measurements of muon transverse momentum (pT ) within the 2.1 µs latency of the L1 trigger

o 2 precision detectors for high-level trigger (HLT) and offline muon reconstruction:

– Muon Drift Tubes (MDT) for |η| < 2.7 with position resolution of ∼ 80 µm

– Cathode Strip Chambers (CSC) → replaced with New Small Wheel detectors
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– 1 barrel and 2 endcap air-core toroid magnets

– Toroidal magnetic field of ∼ 0.5 T

– Barrel: 1.5 to 5.5 Tm of bending power

– Muon pT resolution: ∆pT/pT ≈ 4%

– Calorimeters stop energetic hadrons
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Resistive Plate Counters

o RPCs were developed by Santonico and Cardarelli in early 80s

Careful study of different designs and many materials to arrive at a working prototype

o Two parallel electrodes producing high uniform electric field

Free electron → avalanche → streamer

o High bulk resistivity reduces surface area for ionisation discharge → suppresses streamers

→ RPCs use phenolic resin known as bakelite - first synthetic plastic invented in 1907

→ O(100 Hz/cm2) counting rates and O(1 ns) time resolution

o RPCs are low-cost detectors covering large surface areas and using gas at room pressure

→ RPCs are used at the LHC by the ATLAS and CMS muon trigger systems

→ Multi-gap RPCs are used as time-of-flight detectors, e.g. reaching ∼ 40 ps resolution with 10 gaps for ALICE
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ATLAS Resistive Plate Chambers

o Parallel resistive plates (bakelite with 2× 1010 Ω · cm) are separated by 2 mm with insulating spacers

o Induced signal is read out using orthogonal η and φ copper strips with 23-35 mm pitch

o ∼ 1 ns total time resolution → excellent separation of proton bunches that are 25 ns apart

o 320 MHz clock for detecting raising edge of the amplified avalanche signal → 3.125 ns wide time bins

o RPC operate in avalanche mode with average applied voltage of 9.6 kV → working at the efficiency plateau

o Non-flammable low-cost gas: tetrafluorethane C2H2F4(94.7%), iso-butane C4H10(5%), sulphur hexafluoride SF6(0.3%)

o This mixture is a potent greenhouse gas → currently being phased out in EU → raising costs and environmental impact
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ATLAS RPC detector

o 3 concentric cylindrical shells of double-layer (doublet) chambers located at radii of 7, 8 and 10 meters

o ∼ 3700 gas volumes with the surface area of ∼ 4000m2 with ∼ 360k readout strips

o Provide 6 measurements in bending (r , z) plane and 6 measurements in non-bending (x , y) plane

Non-bending (x , y) plane - RPC φ strips

  

Large sector

Small sector

Bending (r , z) plane - RPC η strips
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Performance of RPC detector with proton-proton collision data at 13 TeV
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→ Study RPC detector performance to check for possible aging effects

→ RPC performance paper using 2018 data: JINST 16 (2021) P07029

Study of FPGA-based neural network regression model Rustem Ospanov 8

http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/MDET-2019-01


RPC detector response

o Measure RPC detector response with offline probe muons produced in pp collisions

– Use Z boson decays to 2 muons - one muon is tag and second is probe

– Propagate probe muons in magnetic field to predict an impact point on the RPC surface

– Offline probe muon candidates are reconstructed using primarily the MDT detector

o Detect hits associated with muon induced avalanche → hit time and multiplicity

– Hit is a signal induced in one strip which is above a tunable threshold of the front-end electronics

Calibrated hit time for one RPC module
Zero corresponds to time of pp collisions

Reconstructed hit time t [ns]
100− 80− 60− 40− 20− 0 20 40 60 80 100

 s
tr

ip
s/

3.
12

5 
ns

η
H

its
 fr

om
 

500

1000

1500
ATLAS 

-1 = 13 TeV, Run 358395, 0.72 fbs
 viewη probe muons, one RPC panel, µµ →Z 

All hits,           fraction(|t| > 12.5 ns) = 0.021
On track hits, fraction(|t| > 12.5 ns) = 0.003

Hit multiplicity in response to muon passage for one RPC module
Efficiency is a fraction of events with at least one detected hit

 strips hit multiplicityη
0 1 2 3 4 5 6 7 8 9 10

M
uo

ns

0

200

400

600

800

1000

1200

1400

1600

1800

0.006±      = 0.965all∈All hits,       
0.006± = 0.963in-time∈In-time hits, 
0.006±  = 0.960signal∈Signal hits,  

ATLAS 
-1 = 13 TeV, Run 358395, 0.72 fbs

 probe muonsµµ →Z 
 viewηOne RPC panel, 

Study of FPGA-based neural network regression model Rustem Ospanov 9



RPC detector efficiency

o Muon detection efficiency = probability to detect avalanche with ≥ 1 hit

– Measured using events containing a muon predicted to pass through a given chamber

– Gas gap efficiency = probability to detect a muon induced avalanche using either η or φ strips

o Average RPC detector efficiency to detect a muon is ∼ 94%

– Excellent detector stability during data taking in 2018

– About 10% of RPCs were off in 2018 due to gas leaks - these chambers are not shown below
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RPC counting rates and ionisation currents

o Measured RPC ionisation currents and counting rates as a function of instantaneous luminosity

– Scale linearly with instantaneous luminosity, as expected

o Also measured the mean avalanche charge = I/Rcounts ≈ 30 pC

– Consistent with test beam results → confirmed with the full RPC detector

Counting rates (Rcounts) at different radii

0 5000 10000 15000 20000

]-1s-2 cm30Instantaneous luminosity [10

0

10

20

30

40]2
R

P
C

 c
ou

nt
in

g 
ra

te
 [H

z/
cm ATLAS

 = 13 TeVs

HV = 9.6 kV

 used during data-takingthrVStandard 

Zero-bias collisions

-3 10× 0.015) ±RPC1 BM, slope = (1.200 
-3 10× 0.011) ±RPC2 BM, slope = (0.782 
-3 10× 0.007) ±RPC3 BO, slope = (0.536 

Ionisation currents (I ) at different radii

0 5000 10000 15000 20000

]-1 s-2 cm30Instantaneous luminosity [10

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5]2
A

/m
µ

M
ea

n 
ga

p 
cu

rr
en

t d
en

si
ty

 [

ATLAS

 = 13 TeVsData 2018, 
BML1A01

BMS1A02

BOL1A01

BOS1A02

Mean avalanche charge = I/Rcounts

0 20 40 60 80 100

Mean avalanche charge [pC]

0

50

100

150

200

250

R
P

C
 m

od
ul

es

ATLAS
-1 s-2 cm34 10× = 1.8 

inst
 = 13 TeV, Ls

HV = 9.6 kV, zero-bias collisions

mean = 30.4 pC

Study of FPGA-based neural network regression model Rustem Ospanov 11



RPC integrated charge limits

o RPC detector was certified for up to 0.3 C/cm2 integrated charge

– This corresponds to about 10 years of LHC operations at O(100 Hz/cm2), equivalent to 30 µA/m2

– Some chambers at high |η| will exceed this limit for High Luminosity LHC → reduce HV and replace some RPCs
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RPC detector time resolution

o Measure time resolution using time differences of muon signals recorded by two parallel RPC layers

– Two layers are separated by ∼ 20 mm → negligible muon time-of-flight

– Subtract time resolution component of the front-end electronics which is measured in-situ

o Average measured RPC time resolution: σRPC/
√

2 ∼ 1 ns

– Small differences between η and φ time resolution is due to differences in construction
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Search for slow-moving stable charged particles

o Time-of-flight and dE/dx energy loss are used to search for heavy stable charged particles

– RPC is the most sensitive detector for measuring muon time-of-flight

o Search for production of supersymmetric particles (stau, chargino, gluino, R-hadron)

– Sensitive to other models producing heavy stable charged particles

RPC has most precise βµ resolution of ∼ 2%
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ATLAS L1 muon barrel trigger
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Level 1 muon barrel trigger

o L1 muon barrel trigger uses RPCs to detect muon
trigger candidates at 40 MHz rate

– Custom-built on-detector electronics making
decision within 2.1 µs

– 3328 detector regions with ∆η ×∆φ ≈ 0.1× 0.1

o 3 low pT thresholds:

– 3/4 coincidence within trigger road in the two inner

doublet layers (RPC1 and RPC2)

o 3 high pT thresholds:

– Require highest low-pT trigger plus 1-out-of-2

coincidence in the outer doublet layer (RPC3)
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L1 muon barrel trigger: coincidence matrix

o Coincidence matrix ASIC (CMA)

– Application-specific integrated circuit (ASIC) to check coincidence of hits between two RPC layers within a cone

– 6 programmable roads (cone sizes) correspond to 6 trigger thresholds for muon pT

High-pT MU20 road for bending η coordinate

Road width is determined by muon curvature in magnetic field
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Level 1 muon barrel trigger: efficiency

o MU20 is the primary L1 muon trigger threshold for selecting muons with pT > 20 GeV for physics data taking

– Highly efficient for detecting muons produces in decays of W and Z bosons

– RPC acceptance holes and detector inefficiency lead to the efficiency plateau at 70% for MU20 trigger

– Steepness of the efficiency curve determines trigger rates → dominated by muons with mismeasured pT

o Steepness of the efficiency curve determines trigger rates

– Accepted MU20 events are dominated by low-pT muons produced in bb̄ + cc̄ events

L1 barrel muon trigger efficiency εtrigger vs. pT
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L1 muon barrel trigger: (in)efficiency and rates

o RPC acceptance holes and detector inefficiency lead to the efficiency plateau at 70% for MU20 trigger

– Will install three new RPC layers in the inner barrel region for HL-LHC operations to increase acceptance

o RPC muon trigger rates are dominated by low-pT muons with mismeasured momentum

– New Small Wheel detectors will reduce the endcap muon trigger rate by a factor of ∼ 3

– Barrel RPC muon trigger rates would then contribute a significant fraction of L1 events

– Our study aims to improve pT resolution of the future RPC trigger by using a neural network regression

MU20 trigger efficiency in (φ, z) plane
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Muon spectrometer upgrades for High Luminosity LHC
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Muon spectrometer upgrades for High Luminosity LHC

o Current RPC:

– 6 layers with η × φ grid of 3 cm wide strips

– Custom ASICs for muon trigger electronics

– Total L1 bandwidth is 100 kHz

– L1 latency to process an event: 2.1 µs

o After HL-LHC upgrades in 2025∼2026:

– Higher background → higher trigger rates

– 3 new inner RPC layers with better time resolution
→ Thin-gap RPCs in inner barrel (BI)

– L1→L0: 1 MHz bandwidth & 10 µs latency

– New FPGA-based electronics for L0 muon trigger

– MS Phase-2 Upgrade Technical Design Report

– TDAQ Phase-2 Upgrade Technical Design Report
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FPGAs in future ATLAS trigger system

o Field-programmable gate array device (FPGA)

– Integrated circuit configurable after manufacturing

– Programmable logic blocks and interconnects

– Use software to programme computing hardware

o L0 muon trigger:

– Input: ∼ 0.1 MB at 40 MHz ≈ 4TB/s

– Fixed L0 muon latency ∼ 4 µs→ too fast for CPUs

– Use FPGAs for hardware trigger algorithms

o High-level software-based trigger system (HLT) :

– Input: ∼ 2 MB at 1 MHz

– Partial event reconstruction in regions of interest

– R&D to use FPGAs to accelerate HLT algorithms

Study of FPGA-based neural network regression model Rustem Ospanov 22



Neural network regression model for RPC muon trigger
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Neural network regression model: goals

1. Our first goal is to measure muon q/pT in order to improve |pT | resolution of the RPC trigger

– Idea is to include muon charge q → narrower trigger road → better pT resolution and smaller background

– Essentially, we use the neural network regression model to fit q/pT

2. Design requirements

– Aim for fast enough network with small FPGA resource usage << resources of proposed XCVU13P FPGA

– Aim for neural network latency << 10 µs latency of the future L0 trigger system

– If these goals can be achieved, neural networks can be also used for new exotic triggers - long lived particles, etc

3. Advantages of using neural networks for hardware trigger

– Machine learning algorithms allow to reach higher signal efficiency and smaller background acceptance

– Same circuit can be used for different detector elements → differences encoded via training weights

– Same circuit can be used for different triggers, for example to trigger on long lived particles

o Collaboration with Prof. Changqing Feng, and Wenhao Dong, Wenhao Feng, Kai Zhang, Shining Yang

– Preliminary results reported at CHEP 2021, today showing updates from our upcoming paper

– Ours is different approach than Convolutional Neural Networks → presented at CHEP 2019 by Stefano Giagu
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RPC toy simulation model

o RPC detector toy model for first studies:

– Model existing RPC with perfect acceptance
(for easier comparisons with ATLAS data)

– Uniform 0.5 T toroidal B-field

– 6 RPC layers with 3 cm wide strips

– Only bending (η) detector view

– 95% efficiency to produce muon hit

– 25% prob. to produce 2-strip muon cluster

– 0.1% prob. per strip to make noise hit

– No detector material (multiple scattering is

small because of the air-core toroids)

o Muon simulation parameters:

– Flat muon pT : 3 to 30 GeV

– Flat muon angle: 50 to 85 degrees to z-axis

– Python code in GitHub:
https://github.com/rustemos/MuonTriggerPhase2RPC
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Candidate muon reconstruction

1. In each single layer, reconstruct nearby
contiguous hits as one cluster

2. In each doublet layer, merge overlapping
single-layer clusters into one super-cluster

3. In RPC2 doublet layer, draw a straight line

through each RPC2 super-cluster (seed line)

3.1 In RPC1 and RPC3 doublet layers, select
super-cluster closest to this line

3.2 If the selected super-clusters are within ±20

strips to seed line, make a muon candidate

o With a window of ±20 strips to make candidates,

muons with pT < 3 GeV bend outside this window

o 2 candidates when a noise hit is reconstructed as a

muon cluster
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Candidate muon reconstruction: muon deflections

o Deflections from the straight line are due to muon curvature in the magnetic field

– Computed with respect to the straight line from the collision point (origin) to the RPC2 seed cluster

o RPC3 deflections from the seed line are plotted below as a function of muon qpT
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Neural network inputs

o 3 inputs for the neural network training:

1. RPC2 seed cluster z position (gives muon angular direction to NN)

2. RPC1 cluster ∆z to seed line for |∆z| < 0.15 m

3. RPC3 cluster ∆z to seed line for |∆z| < 0.6 m

– Using differences improved NN convergence and performance
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Neural network regression model: design

o Scan several network architectures

→ Select 3 hidden layers with 20 nodes each & ReLU activation

o Network size is driven by RPC resolution with 3 cm wide strips

→ Little benefit from a larger network size

o Linear loss function to improve training convergence

→ Mean of |differences| between simulated and predicted q/pT

o Network training with PyTorch:

– 100k events without noise to improve convergence & performance

Loss function vs. training epoch
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Neural network performance

o Excellent performance for predicting q/pT for pure muons

– Noise µ shown in orange

– Evaluated with statistically independent events

– Contributions from noise muons are small

– Also developed quality criteria to suppress noise muons

Predicted vs. true q/pT
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Neural network performance: trigger efficiency
o Compute efficiency for selecting muon candidates with pT > 20 GeV:

– Compare to MU20 trigger efficiency in data as shown earlier

– Toy simulation has perfect acceptance → scale efficiency curve to match the data plateau

o Obtained much steeper efficiency curve than data - potentially leading to lower muon trigger rates

– Missing many effects present in the real RPC detector → still looks interesting enough to study further...

Relative pT error vs. true q/pT
Achieved about 20% pT resolution at 20 GeV
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Efficiency to trigger muon with pT > 20 GeV

Scale efficiency curve to match the data plateau
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FPGA implementation and simulation
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FPGA implementation

o Implemented the full neural network regression model in Vivado HDL

– Data processing logic not yet implemented - important for final prototype

o Serial data pipeline between layers

– Reduce a number of connections between layers using distributor → smaller latency

– 5 clock cycles for signal handshake, final adder & ReLU operations and transmission

o Process in parallel 20 neurons of each layer

– Processing element (PE) implements logic for one neuron node → next page
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FPGA implementation: neuron processing element

o Neuron node is implemented in processing element (PE):

– Output = ReLU(
∑20

i=1 xi · weighti + bias)

– Process serially 20 data inputs from the previous layer

– Latency = (Ninput + 4)×∆tclock = 24×∆tclock

o Multiply-add-accumulate (MAC) unit:

- Implemented using one digital signal processor (DSP)

- 3 clock cycles for multiplication and 2 clock cycles for addition

- Odd/even inputs are processed independently: IAi ∗Wi + ACi−2
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FPGA implementation: latency and resource usage

o Latency for the full network: 98 clock cycles

245 ns @400 MHz << 10 µs latency of L0 trigger system

o Deadtime for the full network: 24 clock cycles

60 ns @400 MHz < 3 LHC bunches = 75 ns

o Resource usage for implementation on Xilinx FPGA XCKU060:

LUTs Registers DSPs
9949 (3.15%) 10257 (1.55%) 68 (2.36%)

o This corresponds to ∼ 0.5% of resources of XCVU13P FPGA

– 32 such devices will be used for muon barrel trigger upgrade

o Much lower resource usage than hls4ml with ×3 latency

– Latency can be further reduced by using more DSPs
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FPGA implementation: fixed point arithmetic

o Our FPGA implementation uses 16-bit binary fixed-point numbers

– Scan several options for fractional part precision

– Compute relative pT error between full precision and fixed-point precision - plotted below

– Chosen 10 bits for the fractional part and 6 for the signed integer part
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FPGA simulation

o Full neural network circuit has been tested using simulation:

– Simulation test project was developed using Questa Advanced Simulator and SystemVerilog

o Compare results from PyTorch and FPGA simulation for the same events:

– Percent level errors from using fixed point 16-bit arithmetic

– Efficiency curve for the FPGA implementation is nearly identical that obtained with PyTorch
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Potential applications for FPGA-based neural networks

o HL-LHC searches for long lived particles (LLPs)

– L1 trigger was optimised for detecting SM particles

– FPGAs allow development of dedicated exotic triggers

– Can neural networks be used to trigger on exotic signatures?

LLP decays, slow-moving LLPs, highly ionising LLPs

o Hardware accelerators for ATLAS High Level Trigger (HLT)

– HLT runs on a large CPU farm that will process events
accepted by L0 at 1 MHz rate

– Is it possible to use FPGAs or GPUs to accelerate
CPU-intensive (track) reconstruction steps?

– Ongoing R&D to answer this question by 2025, plan to use
commercial FPGA or GPU cards plugged in PCIe slots

– Main points: cost, power, cooling, flexibility, usability
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Summary and outlook

o Effective trigger selection of muon candidates is crucial for the ATLAS physics programme

o Excellent performance of the ATLAS RPC detector and L1 muon barrel trigger with 2018 data

o Extensive muon spectrometer & trigger upgrades are planned for the HL-LHC

o All new FPGA-based L0 muon trigger electronics will allow more sophisticated trigger algorithms

o We developed resource efficient FPGA-based neural network regression model

– Regression model is trained with toy RPC simulation to measure muon q/pT

– Promises better performance than the current L1 system → steeper muon efficiency curve

– Implemented this neural network in FPGA code: 245 ns latency and very low resource usage

o Results look promising and warrant further studies using more accurate simulation

– Plan to develop dedicated triggers to search for new long-lived particles using the muon spectrometer

Thank you for your attention!
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BACKUP
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Trigger timing calibrations

I RPC hits (muon signals) are calibrated online with 3.125 ns step

– More than sufficient to identify individual LHC bunch crossings with 25 ns spacing

I 99.7% of muon candidates arrive within expected 25 ns time window

I Excellent stability of timing calibrations during data taking period

L1 RPC trigger BC - Collision BC
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RPC trigger efficiency is reduced by ≈ 20% by detector support structures
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RPC trigger efficiency is reduced by another ≈ 10% by inefficient modules (left plots)
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HL-LHC studies

I RPC upper limit on current density is 30µA/m2 for HL-LHC at L = 7.5× 1034cm−2s−1

I Extrapolate current LHC data to high luminosity to study expected performance

– Chambers with smaller radius and at high |η| will exceed these limits

– Plan to reduce HV to 9.2 kV and decrease front end thresholds to regain ∼ 10% efficiency

I Scan FE discriminator thresholds at 9.6 kV (nominal) and 9.2 kV (proposed for HL-LHC)

RPC detector currents at different |η| stations
versus instantaneous luminosity
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RPC toy simulation: hit multiplicity

– On average, about 9 total hits per event

– On average, about 2 noise hits and 1.8 cluster hits
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Neural network simulation: cluster multiplicity

– Super-clusters are reconstructed from single-layer
clusters in one doublet layer that are within
1.5×strip width

– On average, about 8 single-layer clusters

– On average, about 5 super (double-layer) clusters

– Check: same number of hits for both cluster types
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Neural network simulation: super-cluster position differences

o Muon candidates:

– Require ≥ 1 clusters per RPC1, RPC2 and
RPC3

– Make muon candidate for each RPC2 (seed)
cluster

– Draw line through each RPC2 seed cluster

o Clear correlations between pT and ∆z for muons
without noise hits

o As expected, random deviations for muons

containing noise hits
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Candidate muons

o On average, we reconstruct 1 muon candidate per simulated event

– 0 candidates when one doublet layer is inefficient

– 2 candidates when a noise hit is reconstructed as a cluster

– In later plots, noise muon candidate (noise µ) contains at least one noise cluster
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Training events with noise Training events without noise
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FPGA implementation: multiply-add-accumulate (MAC) unit

o MAC is implemented using one DSP with 3 clock cycles for multiplication and 2 clock cycles for addition

o Odd and even input data elements are processed in parallel and independently: IAi ∗Wi + ACi−2
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Simulated dose and particle flux

Neutron equivalent flux
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HL-LHC upgrades of RPC detector and trigger

o For HL-LHC data-taking, RPC will provide up to 9 measurements of η × φ

o Inner barrel RPCs will increase detector acceptance

o MDT will be included in hardware muon trigger → refine pT measurement for candidates accepted by RPC

o Order of magnitude better time-of-flight resolution with new on-detector electronics and faster thin-gap RPCs

RPC trigger/readout schema
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