r-process nucleosynthesis and kilonovae from compact binary mergers

Diego Vescovi¹

1. Goethe University, Frankfurt, Germany

2nd PANDORA Progress Meeting INFN-LNS Catania - Italy, 16-17 December 2021

The origin of heavy elements in the Solar System

- Fusion reactions between charged particles
- Neutron capture processes :
 - → r(apid)-process
 - → s(low)-process

r-process: basic ideas

- key reactions: (A, Z) + $n \leftrightarrow$ (A + 1, Z) + γ
- *r*-process requires initial high *n_n* and *T*
 - $\rightarrow \text{ high } n_n : \tau_{(n,\gamma)} << \tau_{\beta\text{-decay}}$
- equilibrium freeze-out: n_n drops and β -decays take over

Where can the *r*-process occur?

- 1) Neutrino-driven winds from core-collapse supernovae (CCSN)
- 2) Neutron-rich polar jets of magneto-rotational supernovae (MHD-SNe) or accretion disk outflows of collapsars
- 3) Ejecta from binary neutron star mergers (BNS) or neutron star-black hole (NS-BH) systems

First evidence of *r*-process nucleosynthesis in kilonova from GW170817

r-process nucleosynthesis in BNS mergers

- Electron fraction $Y_{e} \sim n_{p} / (n_{n} + n_{p}) \rightarrow \text{dominant parameter}$
- → Threshold value $Y_{e,crit} \approx 0.25$

Production of lanthanides dramatically changes photon opacity κ_v

- no lanthanides: low opacity ($\kappa_v \leq 1 \text{ cm}^2/\text{g}$)
- presence of lanthanides: increased opacity ($\kappa_v \gtrsim 10 \text{ cm}^2/\text{g}$)

BNS merger + kilonova

- Red emission:
 - → Tidal ejecta
 - Peak luminosity at days 1 week after the merger
 - Lanthanide dominated low Y_e
- Blue emission:
 - → Polar ejecta
 - → Peak luminosity at 1-2 days after the merger
 - → 1st/2nd peak dominated high Y_e

 γ -rays

observer

Properties of GW170817/AT2017gfo

- 17/08/17, GW+EM detection of an event compatible with BNS merger (LVC PRL 2017)
- Blue component
- Red component
- Thermal emission by radioactive decay of heavy elements synthesized in multicomponent (2-3) ejecta

Properties of GW170817/AT2017gfo

Spectral analysis <u>hampered</u> due to:

- Heavy elements have forest of lines hence strong blending
- **Relativistic velocity** makes for extremely broad lines (multicomponents and different velocities)
- Atomic data are <u>incomplete and</u> <u>uncertain</u>
- → The analysis of the spectrum at 1.5 days suggested the presence of strontium (Watson +19)

Composition effects on kilonova spectra and lightcurves

Light curve profile depends on the properties of the ejecta (e.g., mass, velocity, composition → opacity)

$$t_{\text{peak}} \equiv \left(\frac{3M\kappa}{4\pi\beta vc}\right)^{1/2} \approx 1.6 \, \text{d} \, \left(\frac{M}{10^{-2} \, M_{\odot}}\right)^{1/2} \left(\frac{v}{0.1 \, \text{c}}\right)^{-1/2} \left(\frac{\kappa}{1 \, \text{cm}^2 \, \text{g}^{-1}}\right)^{1/2}$$

$$L_{\text{peak}} \approx M \dot{e}_r(t_{\text{peak}}) \approx 10^{41} \text{erg s}^{-1} \left(\frac{\epsilon_{th,v}}{0.5}\right) \left(\frac{M}{10^{-2} M_{\odot}}\right)^{0.35} \left(\frac{v}{0.1 \text{ c}}\right)^{0.65} \left(\frac{\kappa}{1 \text{ cm}^2 \text{ g}^{-1}}\right)^{-0.65}$$

- The kilonova emission is reprocessed by <u>atomic opacities</u> (mainly boundbound transitons) to <u>optical and infrared wavelengths</u>
- → *T*_{peak} ~ 5000 10000 K
- → The emission in these wavelengths can **probe the composition of the ejecta**

Opacities for kilonova lightcurve calculations

- Usually, <u>constant 'grey' opacities</u> are assumed (e.g. Perego+ 17; Villar+ 17)
- Need to consider detailed Tanaka+ 20 10³ atomic opacities of r-process Almost flat elements 10² Planck mean opacity (cm² g⁻¹) 10¹ = 0.40• <u>Systematic opacity calculations</u> 10⁰ covering all relevant r-process $\kappa > ~ 1 \text{ cm}^2\text{g}^{-1}$ elements are now available (e.g., 10⁻¹ Fontes+ 20, Tanaka+ 20) 10⁻² Understand general features 10⁻³ 5000 10000 15000 20000 25000 0 Temperature (K)

... but not accurate in transition wavelengths \rightarrow not suitable for element identification

Elements' signatures in kilonova spectra l

- To identify particular spectral features, we need <u>accurate transiton data</u> (e.g., VALD database)
- <u>Not complete</u> in the NIR region
- Synthetic spectra at 1.5 days from parameterized outflows (Nomoto+ 21)
- → For a <u>lanthanide-rich model</u>, features of doubly ionized heavier elements, such as Ce, Tb, and Th.

→ Possibility to detect them in future NS merger events

Elements' signatures in kilonova spectra II

- Presence of Sr confirmed in lanthanide-poor ejecta
- → Ca absorption feature is also identified → tracer of high-Y_e <u>ejecta</u> (>~ 0.40)
- AT2017gfo spectra do not exhibit such features
 - → Ca abundance too low
- Systematic calculations and radiative transfer simulations including the NIR lines are inconclusive

Elements' signatures in kilonova spectra III

H and He are abundant

- The amount of Sr predicted by <u>ab-initio</u> <u>BNS</u> models is **consistent** with the one required by the analysis reported in Watson+ 19
- However, they probably never contribute to the kilonova spectrum
- Presence of H/He lines

 \rightarrow Supernovae

Summary

- <u>BNS mergers</u> are major production sites of *r*-process elements
- Thermal emission from radioactively-heated multi-component ejecta from BNS mergers accounts for the kilonova AT2017gfo
- No clear chemical signatures for heavy r-process elements
- Evidence for light r-process elements \rightarrow Sr
- Future element detection?
 - → Yes: Ca, Sr, Ce, Tb, Th (+ Nd and U, see Even+ 20)
 - **→ No:** H, He
- Atomic data in the NIR wavelengths are crucial to fully decode kilonova spectra