

Gamma spectroscopy challenges in PANDORA

Alain Goasduff - INFN - Legnaro National Laboratories 2nd PANDORA Progress Meeting December 16th-17th 2021

GASP

EUROBALL

CLARA

- 80 % of nuclear physics research
- 50 % γ -ray spectroscopy

GASP

CLARA

EUROBALL

- $\bullet~$ 80 % of nuclear physics research
- 50 % γ -ray spectroscopy
- Neutron-deficient and neutron-rich nuclei

γ -spectroscopy at LNL - A long story (short)

GASP

CLARA

- $\bullet~$ 80 % of nuclear physics research
- 50 % γ -ray spectroscopy
- Neutron-deficient and neutron-rich nuclei

EUROBALL

γ -spectroscopy at LNL - A long story (short)

GASP

CLARA

EUROBALL

- 80 % of nuclear physics research
- 50 % γ-ray spectroscopy
- Neutron-deficient and neutron-rich nuclei

AGATA

The GALILEO array at LNL

- 10 Triple Clusters + 25 Single crystals
- Home made differential pre-amplifiers (up to 20 kHz)
- AGATA-like readout electronics

INFN

GALILEO Detectors today

- 16 Single crystals have been unmounted
- Average FWHM at 1.3 MeV: 2.3 keV
- HV from 2.5 to 4.5 kV, I $\leq~1\mu A$
- CAEN SY4527 + 2 boards A1561H
- Home made LVPS
- Automatic bias shutdown from LN2 system + signal from detector
- Some detectors present tail due to n-damage

Front-end electronics

²Courtesy of S. Capra & A. Pullia UniMI - INFN Mi

GALILEO pre-amplifier for PANDORA

3

³Courtesy of S. Capra & A. Pullia UniMI - INFN Mi

Modification of the pre-amplifier

The modified pre-amplifiers require:

- LVPS with +24, -12V, +6V, -6V
- Modification of the pre-amplifier motherboard (new capacitor with 35V)
- new LVPS cable between the motherboard and the detector patch-panel.

⁴Courtesy of S. Capra & A. Pullia UniMI - INFN Mi

Test of the new pre-amplifier

Multi-sources test:

- 1. fixed $^{60}\mathrm{Co}$ with a fix rate of 1.5 kHz
- 2. ^{241}Am + ^{133}Ba + ^{137}Cs movable to simulate the background
- 3. 10-min acquisition time

Readout electronics

Readout chain

- Mesytec MDC-8 Differential to single-ended converter
- CAEN VX1725S: 16 channels, 14 bit, 250 Msps, 2 Vpp DPP-PHA
- CAEN A3818: PCIe bridge
- SuperMicro 2U-server: 6029U-E1CR4

Data bandwidth

- Constant rate pulser
- No samples past to the DAQ
- In trigger-less mode:
 - $\bullet~$ 64 GB /~ day /~ detector
 - 900 GB for the full array / day

Data acquisition system

• Software platform developed at CERN

- Software platform developed at CERN
- XDAQ provides:
 - Platform independent services,
 - · Peer-to-peer communication between the actors
 - SOAP for configuration and control.

- Software platform developed at CERN
- XDAQ provides:
 - Platform independent services,
 - · Peer-to-peer communication between the actors
 - SOAP for configuration and control.
- Main Features:
 - Device access
 - · Configuration, control and monitoring
 - Maintainability and portability (releases are now available via YUM)
 - Scalability.

- Software platform developed at CERN
- XDAQ provides:
 - Platform independent services,
 - · Peer-to-peer communication between the actors
 - SOAP for configuration and control.
- Main Features:
 - Device access
 - · Configuration, control and monitoring
 - Maintainability and portability (releases are now available via YUM)
 - Scalability.
- GALILEO DAQ based on release $11 \rightarrow \textbf{SLC6}$

- Software platform developed at CERN
- XDAQ provides:
 - Platform independent services,
 - · Peer-to-peer communication between the actors
 - SOAP for configuration and control.
- Main Features:
 - Device access
 - · Configuration, control and monitoring
 - Maintainability and portability (releases are now available via YUM)
 - Scalability.
- GALILEO DAQ based on release $11 \rightarrow \textbf{SLC6}$
- PARIS DAQ based on release 15 \rightarrow CentOS7

Interface to the front-end electronic:

- GGP readout
- VME readout for ancillaries
- DPP-PHA / DPP-PSD
- \Longrightarrow Application developed in C++

Accessible web interface with the key parameters

E RU Halted	\$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$		
Page last update	d: Wed Sep 18 23:34:08 2019	AutoRefresh OFF	d Monitoring
Host	gal-05.Inl.infn.it	Run Number	9999
Application	Readout Unit	Status	Halted
Application instance	0	Input buffer rate	
Application url	http://gal-	Input bandwidth	
	05.Inl.infn.it:50000	Output buffer rate	0 Hz
Buffer Size	262140 B	Output bandwidth	0.0 MB/s
OutputFile	Disabled	OutputFile bandwidth	0.0 MB/s
OutputFile path	/galileodisks/xData /rudata	OutputFile size	0 MB
OutputFile Max size	n/a		
OutputFile cycle	n/a		

• Configurable inputs

• Configurable inputs

- Configurable inputs
- Configurable time window via XML file

- Configurable inputs
- Configurable time window via XML file

- Configurable inputs
- Configurable time window via XML file
- Minimum fold requirement for the output

- Configurable inputs
- Configurable time window via XML file
- Minimum fold requirement for the output

• Skeleton of actor in C/C++

* User supplied function implementing the action to be executed on the * Halted->Ready transition of the application's finite state machine.

void process config(const char* file, int *error code);

* User supplied function implementing the action to be executed on the * Ready->Enabled transition of the application's finite state machine.

void process_start(uint32_t run, int *error_code);

* User supplied function implementing the action to be executed on the * Enabled->Ready transition of the application's finite state machine. void process stop(int *error code):

* User supplied function that is invoked on the filter application when * a buffer is received. void process_block(void *input_buffer, int input_size, int packet_ID, void *output_buffer, int output_size, *used_size_of_output_buffer , int *error code):

- Skeleton of actor in C/C++
- For GALILEO:
 - Compton-Suppression
 - CFD
 - Pile-Up Rejection
 - Zero suppression
 - Data formatting

* User supplied function implementing the action to be executed on the * Halted->Ready transition of the application's finite state machine.

void process config(const char* file, int *error code);

* User supplied function implementing the action to be executed on the * Ready->Enabled transition of the application's finite state machine.

void process_start(uint32_t run, int *error_code);

* User supplied function implementing the action to be executed on the * Enabled->Ready transition of the application's finite state machine. void process stop(int *error code):

* User supplied function that is invoked on the filter application when * a buffer is received. void process_block(void *input_buffer, int input_size, int packet_ID, void *output_buffer, int output_size, *used_size_of_output_buffer , int *error code):

- Skeleton of actor in ${\rm C}/{\rm C}++$
- For GALILEO:
 - Compton-Suppression
 - CFD
 - Pile-Up Rejection
 - Zero suppression
 - Data formatting
- For PARIS / LUNA:
 - · Rate monitoring
 - Event formatting

/**

* User supplied function implementing the action to be executed on the * Halted->Ready transition of the application's finite state machine. */

void process_config(const char* file, int *error_code);

/**

* User supplied function implementing the action to be executed on the * Ready->Enabled transition of the application's finite state machine. */

void process_start(uint32_t run, int *error_code);

/**

* User supplied function implementing the action to be executed on the \star Enabled->Ready transition of the application's finite state machine. $\star/$

```
void process_stop(int *error_code);
```

**

• User supplied function that is invoked on the filter application when
*/
void process_block(
void visput_buffer, int output_size, int packet_ID,
void vestput_buffer, int output_size,
int
int
int
void vestput_buffer,
int
void vestput_buffer,

- Skeleton of actor in ${\rm C}/{\rm C}++$
- For GALILEO:
 - Compton-Suppression
 - CFD
 - Pile-Up Rejection
 - Zero suppression
 - Data formatting
- For PARIS / LUNA:
 - Rate monitoring
 - Event formatting
- For PANDORA:
 - · Rate monitoring
 - Event formatting
 - Data reduction
 - Energy range
 - Fold
 - ...

/**

* User supplied function implementing the action to be executed on the * Halted->Ready transition of the application's finite state machine. */

void process_config(const char* file, int *error_code);

/**

* User supplied function implementing the action to be executed on the * Ready->Enabled transition of the application's finite state machine. */

void process_start(uint32_t run, int *error_code);

/**

 User supplied function implementing the action to be executed on the Enabled->Ready transition of the application's finite state machine.
 */

```
void process_stop(int *error_code);
```

(**

• User supplied function that is invoked on the filter application when
*/
void process_block(
void visput_buffer, int suppt_size, int packet_ID,
void vesput_buffer, int suppt_size,
**sed_size_of_output_buffer,
int veryor_code);

- 1. GALILEO detectors have been unmounted
 - Average resolution \sim 2.3 keV @ 1.3 MeV
 - Annealing of the 16 detectors could be started

- 1. GALILEO detectors have been unmounted
 - Average resolution \sim 2.3 keV @ 1.3 MeV
 - Annealing of the 16 detectors could be started
- 2. Front-end electronics:
 - New pre-amplifiers adapted to PANDORA have been tested and validated
 - Production of the new pre-amplifier could be started
 - Modification of GALILEO motherboard
 - Modification of the detector LVPS cable

- 1. GALILEO detectors have been unmounted
 - Average resolution \sim 2.3 keV @ 1.3 MeV
 - Annealing of the 16 detectors could be started
- 2. Front-end electronics:
 - New pre-amplifiers adapted to PANDORA have been tested and validated
 - · Production of the new pre-amplifier could be started
 - Modification of GALILEO motherboard
 - Modification of the detector LVPS cable
- 3. Back-end electronics:
 - Digitizers of the SPES β -decay station delivered
 - Test with pulser and detector on-going

- 1. GALILEO detectors have been unmounted
 - Average resolution \sim 2.3 keV @ 1.3 MeV
 - Annealing of the 16 detectors could be started
- 2. Front-end electronics:
 - New pre-amplifiers adapted to PANDORA have been tested and validated
 - · Production of the new pre-amplifier could be started
 - Modification of GALILEO motherboard
 - Modification of the detector LVPS cable
- 3. Back-end electronics:
 - Digitizers of the SPES β -decay station delivered
 - · Test with pulser and detector on-going
- 4. Acquisition system:
 - Recently developed a full XDAQ chain for CAEN digitizers
 - Rate capabilities tested up to 50 kHz on 12 channels using LaBr₃
 - On-going optimization for the DPP-PHA

- 1. GALILEO detectors have been unmounted
 - Average resolution \sim 2.3 keV @ 1.3 MeV
 - Annealing of the 16 detectors could be started
- 2. Front-end electronics:
 - New pre-amplifiers adapted to PANDORA have been tested and validated
 - · Production of the new pre-amplifier could be started
 - Modification of GALILEO motherboard
 - Modification of the detector LVPS cable
- 3. Back-end electronics:
 - Digitizers of the SPES β -decay station delivered
 - · Test with pulser and detector on-going
- 4. Acquisition system:
 - · Recently developed a full XDAQ chain for CAEN digitizers
 - Rate capabilities tested up to 50 kHz on 12 channels using LaBr₃
 - On-going optimization for the DPP-PHA
- 5. Detector support:
 - HV monitoring tools available with alert system (GRAFANA)
 - LN2 Filling system to be done.

