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At ambient conditions 7Be decays in 
53 days into the ground state of  7Li 
(3/2-) for 89.7% of  cases, 10.3% it 
decays into the first excited state (1/2-)

7
4Be+ e� ! 7

3Li+ ⌫e

        Decay may occur by capture of  an orbital e- through the following process:

insensitive to extra-nuclear  
 factors, such as chemical   
  environment, ionization   
    degree, pressure and     
           temperature.p+ e� ! n+ ⌫e

change Z to Z-1 of  an 
atom, keeping fixed A

The driving force 
responsible for 
this decay is the 
weak interaction

One of  the three β-decays  
mediated by the weak force.

W / �(~r)

Contrary to this simple view, there is evidence of  changes in  
nuclear decay rates with these parameters. Why and how? 

Motivation of  this work: provide the missing weak-
interaction input data for Li nucleosynthesis calculations  



• Standard Model of  Particle physics: weak interaction is 
caused by emission or absorption of  very massive bosons

 

 

  

(range of strong
interaction)

Weak hadronic current

Weak leptonic current

Short range=Fermi contact interaction 

β-decay: tool basket



Bound or continuum electron capture



In particular we generalize the theory of  scattering under two potentials in 
the center of  mass, reducing the problem to a two-body scattering: 
  

How do we actually calculate e-capture rates?
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The cross section of  the electron capture process can be written as:

Ei, Ef = internal energies of  the target 7Be and of  the final decay product                              
p = mev and k are relative e- and neutrino momenta in the initial and final 
channels  
v = electron velocity in the initial channel relative to 7Be.

= free-plane wave�i,p

V = screened, short-range Coulomb potential  
W = weak interaction coupling the Coulomb distorted initial state and the 
final decay channels

�+
i,p  = Coulomb perturbed in-state (Coulomb distort + outgoing spherical)

��
f,k  = Coulomb perturbed out-state (Ʋ emitted and target in final state f) 
 �
f,k = Coulomb and weak perturbed out-state (Ʋ emitted and target in final 

state f)

=0
Coulomb operator does not  
couple ini and fin channels 



TW / �(r)
tf,i

Approximations made 

1.  1st Be e.s. is found at 429.4 keV=5X109 K above the ground state 
2.                      = very short range contact interaction 
3.         are chosen equal to those measured on the Earth, neglect 

dependence on T and  
                                       IMPORTANT OUTCOME! 
 7Be-e- can be modelled as a two-body scattering process at a given     
relative electron momentum p. 
The rate is proportional to          . 

p2/2me

⇢e(0)

We can define the T-matrix of  the weak interaction as: 

By multiplying the c.s. by the e- current one obtains the e-capture rate: 

where                                      and                   is the electronic w.f. at the Be 
nucleus. 
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How do we actually calculate e-capture rates?

TW / �(r)
H0 + V



The energy of  the Li excited state is 477.6 keV (~6X109 K) higher than GS 

Be Q0 and Q1 the kinetic energies of  the neutrinos escaping from 7Li in  
its ground and first excited state  

Since the kinetic energy is higher in the first case, the available phase space  
will be larger. We can roughly estimate that for T =  107 K: 

                         BR = 89.7/10. 3 X (Q0 + kT)2/ (Q1 + kT)2/(Q02/Q12) = 8. 684 

The percentage variation of  BR due to an increase of  the temperature by five  
orders of  magnitude is thus only 0.3%                   neglect e.s. decay!!!

 Be e-capture

Q0 = 861.815 keV                                            Q1 = Q0 - 477. 6 = 384. 2 keV 

At ambient conditions 7Be decays in 
53 days into the ground state of  7Li 
(3/2-) for 89.7% of  cases, 10.3% it 
decays into the first excited state (1/2-)

7
4Be+ e� ! 7

3Li+ ⌫e

 1st Be e.s. is found at 429.08 keV=5X109 K above the ground state 



find a good theory to model for different T 
and 𝜚 the hot plasma composed by 7Be atoms 
surrounded by Np protons (hydrogen nuclei) 
and Ne electrons, as a degenerate (quantum) 
Fermi gas, taking into account accurately the 
electron-electron interaction! 

Major problem:



The e-capture rate for 7Be is proportional to the electronic 
density at the nucleus!!! 

How to calculate            ?  

State-of-the-art techniques are based on the the Debye-Hückel (DH) 
models of  screening, valid only for solar conditions and when 
electrons are not degenerate (but in RBG they could). 

Does DH approximation really stand??? 

How do we actually calculate e-capture rates?

⇢e(0)

Our model system of  stellar plasma is a Fermi gas in the presence of  
neutralising  particles, such as proton, helium, etc…

Factors affecting this density, such as T (charge state distribution), 𝜚, the 
level of  ionization and the presence of  other charged particles, screening 
the interaction, can appreciably modify the decay rate



DEGENERACY CONDITIONS: CLASSICAL vs. QUANTUM 

                                                                 The separation between identical particles is <<                
The density is >> Nq where Nq is the number of  available 
quantum states     

Condition of  the stellar material at high T

⇢e >> nQNR = (2⇡mekT/h
2)3/2 = 6.65⇥ 1031 m�3

T << h2⇢2/3/(2⇡mk) = 9.12⇥ 106

l << �DB = h/p ' h/(3mekT )
1/2 = 2.731⇥ 10�11 m

De Broglie wavelength in the core of  the Sun

Electronic density

�DB

Solar core: T=15.6 X 106 K                   7Be atoms are all ionized  
(12000 K = 1 eV)!!!

In the solar core the temperature is marginally too high for 
degeneracy of  electrons, but decreasing R can set it in... 

To have degeneracy  K 

                 and thus                                            , which cannot keep the pace with

⇢e / R�3

T / 1/R nQNR / T (3/2) / R�3/2

Cold? Fermi gas can be degenerate even at millions of  K.



Debye-Hückel  

Which Hamiltonian? Flavours of  Electronic 
Correlation 

Hartree-Fock

model

model

Thomas-Fermi

model

Lower accuracy

Low
er

 a
cc

ura
cy

beyond  
mean-field



Many-body problem is replaced by many 1-body problem in       

which e- are independent and feel an average potential  

Hartree-Fock, TF, DH within BO approximation

 (r) =  a(r1) b(r2)�  a(r2) b(r1)

Correlation keeping the electrons apart is just among unsociable          
same spin electrons: Pauli exclusion principle

Vm(r)

There are 2 mechanisms to avoid each other: exchange and correlation,   
both lower the total energy and dress the e--e- bare interaction.

Thomas and Fermi (1920s) were the first to give an approximate 
expression of  E as a function of  the electronic density.  
The kinetic, electronic exchange and correlations terms are taken 
from the theory of  the uniform electron gas: 

Electronic density is far from uniform in a plasma
DH: Fermi-Dirac statistics to Boltzmann distribution linear in T



Some data…
Degenerate 
condition

Solar 
condition



A pictorial view of  7Be half-life…
half-life (days)= 941.86881/𝜚(0)



In the traditional theory of  β-decay processes, spectra are typically 
calculated as product of  three factors:  

 a phase-space factor to deal with the momentum sharing between the β-
electron (p) and neutrino (q); 
 a Fermi function F(Z,W) to take into account the static corrections due to 
the Coulomb field of  the nucleus; 
 a shape factor C(W) to include the coupling between nuclear and lepton 
dynamics. 

A typical nuclear β-decay process reads:
A
ZXN ! A

Z+1X
0

N�1 + e� + ⌫̄e

Q�� = {[m(AX)� Z ·me]� [m(AX
0
)� (Z + 1) ·me]�me} · c2 + {

ZX

i=1

Bi �
Z+1X

i=1

Bi}

Q-value:  total energy released by the reaction (             )m⌫ = 0

Q�� = mN (AX)�mN (AX 0) m(AX) = mN (AX) + Zme �
ZX

i=1

(Bi)

Extra-nuclear factor

β-decay: standard approach

dN

dW
/ pWq2F (Z,W )C(W )

⌫ = ±Ze2/~v
F (Z,W ) =

2⇡⌫

1� exp�2⇡⌫
C(W ) = (2L0 � 1)!
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0�k)

(2k � 1)![2(L0 � k) + 1]!



dN

dW
/ pWq2F (Z,W )C(W )

It works well to predict the lineshape allowed and forbidden unique 
transitions, at variance, nuclear structure effects cannot be 
neglected when dealing with forbidden non-unique transitions, and 
there is no such a simple relation for C(W) 

β-decay: standard approach

One can treat first forbidden non-unique transitions as allowed if

where               is the maximum escaping energy of  the β-electron 
and      is the fine structure constant

2⇠ =
↵Z

Rnuc
>> Emax

Emax

Still a rigours treatment of  these transitions including 
electronic and nuclear DOF is missing!!!

↵

Our approach to beta-decay helps to solve these issues, 
at least in the leptonic current term



β-decay rate is calculated by using Fermi’s Golden Rule:

 

Creates a proton

Destroys a neutron

Creates an electron
Destroys a neutrino 
(creates an antineutrino)

 
 

Standard Model β-decay theory

    Weak Interaction Hamiltonian

All the wavefunctions  will be written as Dirac spinors

Pi!f = 2⇡

Z
|hf |Ĥ� |ii|2⇢(Wf )�(Wf �Wi)dWf

H� =
G�
p
2
( ̄f,p(r)�

µ(1� x�5) ̂i,n(r)) · ( ̄f,e(r)�µ(1� �5) ̂i,⌫(r)) + h.c.
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Initial nuclear 
Fock-space state:

Final nuclear 
Fock-space:

Initial lepton
Fock-space:

Field operators entering the Weak Interaction Hamiltonian

β-decay theory

Final lepton
Fock-space:

In the standard approximation, one considers the particles 
entering the decay as non-interacting single particles

 ̂+
e (r) =

X

n0
B ,0

B ,µ0
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+ positron destruction term
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antineutron creation term
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antiproton destruction term
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jp,n,e nuclear spin

projection along the quantization axisµp,n,e
⇠p,n,e quantum number characterizing the nuclear state

Inclusion of  the antisymmetrization

B



   with electron energy

β-decay theory: total decay rate
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expresses the point-like nature of  the decay

This notation is useful because it allows to split the  
matrix element into nuclear and lepton parts
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To find the eigensolutions of  the SM Hamiltonian for the β-
decay we make a first major “approximation”: we assume 
that one can factorize this operator as the tensorial 
product of  of  two interacting currents: 
✤ hadronic (nuclear); 
✤ leptonic (electron + neutrino)

hf |H� |ii =
G�
p
2
JH,µ

i!f
(r)JL

i!f,µ
(r)

β-decay theory

Explicitly:

JL
i!f,µ(r) =  +

f,e(r)�0�µ
�
1� �5

�
 i,⌫(r)

where:

JH.µ

i!f
(r) =  +

f,p
(r)�0�

µ
�
1� x�5

�
 i,n(r)

e- and 𝜈 can be considered uncoupled

n and p w.f. can be factorized provided that the nucleus is “hydrogenic”, that is 
composed by a closed shell with only one single nucleon in one open shell embedded  
in the mean field generated by the closed shell



Nuclear matrix element on a real space grid

inserting the expressions for the field operators

and applying anti-commutation rules for creation/destruction Fock-space operators

one gets
Selection rules

β-decay theory in central symmetry
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p
(rh)�

0�µ(1� x�5) ̂n(rh) â
+
n
|0i · r2

h

JH,µ(rh) =
X

⇠0p,j
0
p,µ

0
p

X

⇠0n,j
0
n,µ

0
n

h0|âp â+
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β-decay theory: total decay rate
Lepton matrix element on a real space grid
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β-decay theory: total decay rate
Lepton matrix element on a real space grid

{â0B,e, â
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and applying anti-commutation rules for creation/destruction Fock-space operators
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one gets
Inclusion of  post-collisional 
                 effects: Fano’s and 

Exchange interactions

Standard beta-decay 
                

QL0,q,B;µ(rh)

QL0,q,C;µ(rh)

i
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by combining the leptonic and the hadronic currents

Differential decay rate (electron energy spectrum)
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It gives the number of electrons per unit energy and per unit time
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The final orbital      depend on     that identifies the 
possible final (shake-up, shake-off, excited) states

 0
i �0

Using L’ = 0,                         ,  h 0
i|�ji = �ij e- wfs at nuclear radius, and �0

one recovers standard beta-decay 
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Differential decay rate (electron energy spectrum)



The time independent Dirac Hamiltonian of  a many particles system 
In the case of  two different types of  interactions, e.g. represented by 
scalar (gS) and vector (gV) potentials, the Dirac equation reads

Calculation of  the leptonic and hadronic wfs: DHF
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9
=
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which in second quantization can be written as follows:
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where s1, s2, s1’,s2’ index the bispinor two-components
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To compute the electronic and hadronic current we use the HF 
approximation
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where
WS � scalar potential

WV � vectorial potential

WPS � pseudoscalar potential

AP � pseudo-vectorial potential

Calculation of  the leptonic and hadronic wfs: DHF

WV +WS � Wood-Saxon potential

WV +WS � spin-orbit potential

AP � magnetic field

For leptons:

For hadrons:

= 0

WV �WS

WS = Coulomb interaction

WV = 0

AP = 0

0



Dirac equation in a spherical potential 

solutions are of  the form:

where

 

are the spherical harmonics tensor

Calculation of  the leptonic wfs

V (r) = �Zf

r
+

Z
⇢(r0)

r>
d3r0 � Vex(r)where

and we assume Vex =
3

2
↵X

h 3
⇡
⇢(r)

i1/3
which is local (TF or LDA)

To numerically solve the DHF equations we use the collocation 
methods, which is a Runge-Kutta type integration method



Calculation of  the hadronic wfs: DHF
By changing the interaction potential, the calculation of  
the hadronic wavefunctions within the nuclear matrix 
elements can be performed

VC(r) = �VC


1 + exp
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◆��1

ṼSO(r) = ṼSO


1 + exp
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1/3R = R0A

1/3

aSOa

VC = V0

✓
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◆
Nuclear wfs simulations out of  scope (WS model potential)

ṼSO = �VC

and

and

= nuclear radius

= diffuseness

V0,�,�, a = aSO, R0, R0,SO

are parameters to be optimised  
according to experiments or ab-initio 
nuclear structure simulations

V0 = 52.06 MeV,� = 0.639, R0 = 1.260 fm,R0,SO = 1.160 fm,� = 24.1, a = aSO = 0.662 fm

Protons

Neutrons
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The beta-decay spectrum of  
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The beta-decay spectrum of  
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Final-state nuclear many-body affects on beta-decay 
spectra of  odd-odd nuclei? 

The experimentally determined 
final state of  the             daughter 
nucleus is 0+. Within the nuclear 
shell model two protons and two 
neutrons all occupy the 1d3/2 
single-particle state. By coupling 
the 1d3/2 n to p and to a 1d3/2 
“core” to construct a 0+ final 
symmetry state, and by 
calculating the hadronic matrix 
element for this transition only, 
we obtain the lineshape reported 
as a blue curve in the previous 
figure. We could not yet find a 
good agreement between 
simulations and experimental 
data.

36
18Ar18

Adding “nuclear many-body 
effects” by mixing transitions to 
the 1d3/2  orbital with the 2s1/2 
level, which is energetically close, 
we find good agreement with 
experiments



Final-state nuclear many-body affects on 
beta-decay spectra of  odd-odd nuclei? 
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The half-life for the radioactive 134Cs and 135Cs 
in astrophysical scenarios  

✤ The abundance of  Ba in AGB stars depends solely on slow (s) n-captures 
✤ The s-process contribution to the element Ba starts from neutron captures  

on the stable isotope 133Cs 
✤ The flux proceeds through a branching point at the radioactive 134Cs, where 

n-captures compete mainly with β−decay (laboratory half-life = 2 yr) to 
excited states of  134Ba and, much less effectively, with electron captures to 
134Xe (half-life = 6.8·105 yr)  

✤ From 134Cs, n-captures feed the longer-lived 135Cs, and then 136Cs (half-life = 
13.16 d) and 137Cs (half-life = 30.07 y), which are sites of  branching points for 
the s-process path, but whose decay rates remain essentially unchanged for 
varying temperatures



134
55 Cs →134

56 Ba + e− + ν̄

     134Cs short-lived nuclear excited states      

Cs(4+) → Ba(4+,3+,4+)

Cs(5+) → Ba(4+,3+,4+)

Cs(3+) → Ba(4+,3+,4+,2+,2+)

11 keV above the GS

60 keV above the GS, unsafe attribution

1 keV≈11.6 MK



How rates are typically assessed  

The ft’s can be quite large, and sometimes the “log ft” value is 
quoted. log(ft) can be measured, this is called systematics

Experimental tests of  Fermi’s theory

t1/2 = log(2)/λβ

Include shape factor  
(accounting of   
“forbiddeness”) 
and Fermi function 
(accounting of   
Coulomb distortion  
of  the e wf)

Invert the eq.

Start from the allowed 
beta transition Fermi  
Formula



134Cs stellar β−decay rate of  TY87 and of  Li. et al. obtained with the 
shell model (Kuo-Ang Li et al. 2021 ApJL 919 L19)

T (GK)



The half-life for the radioactive 134Cs and 135Cs in 
astrophysical scenarios: our model  

 The hadronic and leptonic currents have been 
factorised in two non-interacting  parts. 

The nucleon-nucleon interaction is modelled by a 
relativistic one-body Wood-Saxon potential. 

 Nuclear dynamic correlation is neglected. 

The calculations of   decay have been carried out by solving the 
Dirac-Hartree-Fock (DHF) equations for both the electron liquid and 
the nucleus, using the following approximations: 

β



Assumptions in the nuclear simulations 

The decaying neutron in the Cs nucleus is found in the 2d3/2 shell 
and weak decays into a proton in the 1g7/2 shell of  Ba. This was 
deduced according to the nuclear shell model and can be a crude 
approximation particularly for the excited decays, where several 
states may participate in the decay. This state is geometrically 
coupled to the “core” of  the other nucleons to recover the total J.  

 In a many-body approach, such as CI, the decaying neutron wave 
function is a superposition of  several configuration of  nearby 
energy. In 134Cs those are the 1h11/2 and 3s1/2 single-particle 
orbitals, respectively. However, this level of  forbiddance is higher 
than the d to f  owing to a bigger jump in .ΔJ

 The population of  nuclear states has been assumed to follow a 
Boltzmann probability distribution, i.e. , where E is 
the energy of  the nuclear level, T the temperature, and KB the 
Boltzmann constant. We also took into account the degeneration of  
the three nuclear levels, which is 9(4+), 11(5+), and 7(3+). 

exp(−E/KBT )



The nuclear shell model: practical view

Protons Neutrons

134Cs is an odd-odd nucleus: 
79 n 
55 p 



 The chemical potential of  electrons and positrons is calculated 
under the assumption to deal with an ideal Fermi gas in a box using 
a relativistic energy-momentum dispersion . 
Protons are non-relativistic particles. 

The density of  protons   (protons/cm3) and is equal to the       
density of  electrons minus the density of  positrons at that given 
temperature (energy can be high enough to form e+-e- couples): 

E2 = c2p2 + mec4

np

Assumptions in the electronic structure calculations 

np = ne− − ne+

 The electronic levels of  the Cs atom have not been re-optimized at 
each temperature. It is assumed that they are the same at any 
temperature, and we populate them according the Fermi-Dirac (FD) 

distribution , where the energies  

of  the i-th level is obtained via the self-consistent solution of  the 
DHF equation and the chemical potential from the implicit relation 
valid for a Fermi gas:

 

ni
e− =

1
1 + e(ϵi−μe−)/(KT)

= F(T, μ) ϵi

ne− = ∫
∞

0
dp p2/π2 × (F((c × (p2 + c2) − μe)/kT ) − F((c × (p2 + c2) + μe)/kT ))



 We renormalize the rate at all temperatures by a constant factor 
obtained so as to recover the room temperature experimental 
log(ft) in simulations (~10). We expect this to be due mainly to the 
accuracy of  nuclear wavefunction calculations more than that of  
the electronic part. 

Assumptions in the rate calculations 

 In the neutral atom, electrons move within the mean-field potential   
of  the other electrons, while for the completely ionized atom (bare 
nucleus) the orbitals are optimized by considering only a bare 
Coulomb potential (Cs1s BE = 36.12 keV and 41 keV for neutral and 
completely ionized atom, respectively).
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Important messages from rate calculations 

The  decay rate of  Cs is affected concurrently by two major factors:  

1. the presence of  3 nuclear excited states of  Cs;  
2. the electronic excitation, also up to a complete ionization  

β

The nuclear excited state dynamics is the most relevant of the two, as it 
can increase the rate by a factor of 15 at 100 KeV (1 GK) to 23 at 1000 
KeV with reference to room temperature conditions and by a factor of 3  
at T>108 K for 134Cs as compared to previous works based on 
systematics. 

This is basically due to populating fast-decaying nuclear excited states, 
in particular the 60 keV excited state of 134Cs which delivers a rate 
~ 80 times higher than the 4+ GS decay. This number is obtained by 
comparing the decay rates from 4+ and 3+, as if they were the only 
occupied nuclear states from which the decay occurs.

Nuclear DOF



To summarize some data: owing to the temperature acting on 
both nuclei and electrons we find an increase of  the rate of  about 
3 times at 20 KeV (~ 230 MK), of  6 times at 30 keV, of  8 times at 40 
keV (~ 464 MK) with respect to the GS decay only.  

At variance, in the range [0:15] keV the temperature of electrons has 
the most pronounced impact on the rate. Typically increase the rate as 
electron can be accommodated also in empty bound orbitals. Despite 
being a quark-level process, the contribution of the electronic degrees 
of freedom to the rate is crucial.

Increasing temperature means both populating electronic excited 
states and changing the charge state. This may decrease the half-life 
even by 20% at 10 keV

Electronic DOF





We do not use semi-empirical approaches based on log(ft)  

We do not calculate log(ft) by e.g. using the nuclear shell model to obtain 
the stellar rate of 134Cs within the standard approach to β-decay spectra.  

At variance, in our work we extend the theory and the computational 
methods by using a fully relativistic approach.  

We calculate directly the nuclear matrix elements that enter the hadronic 
current from first-principles. To do so, we adopt a mean-field approach, 
which can of course be systematically improved by using more correlated 
many-body techniques without modifying the backbone of our method. 

  
A second substantial difference relies on the treatment of the leptonic current, 
which is typically neglected or added via a semi-empirical Fermi function. We 
demonstrate that it may halve the half-life of 134Cs around 10 keV. We include 
include both bound and continuum channels, the exchange interaction, the 
non-orthogonality between the parent and daughter electronic orbitals, as a 
function of plasma density, temperature and charge state distributions, 
reaching an unprecedented level of accuracy.

Major differences with state-of-the art methods
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are changed, using those of  the present work. Computations are for 2 M☉ stars, where 
magneto-hydrodynamic processes induce the penetration of  protons into He-rich layers, 
producing 13C then releasing neutrons through 13C(𝛼,n)16O. Abundances are computed in 
stellar winds, where magnetic blobs further add 5% of  C-rich material in flare-like 
episodes.The symbol [Fe/H] indicates Log(XFe/XH)star - Log( 13C)sun 



Percentage of  s-process contributions (blue dots) as computed by 
M. Busso et al. ApJ 908, 55 (2021) for s-only nuclei near the magic 
neutron number N= 82.



• Inclusion of  nuclear dynamic correlation beyond mean-field 
approximation; 

• Estimate of  beta-decay rates of  different elements (176Lu, 94Nb, 
any suggestion from the Pandora collaboration) 
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Conclusions
• A new method for calculating β- and e--capture  

decay spectra in medium to heavy nuclei, which 
extends the standard approach in several ways 

• It works also in astrophysical environment by 
including temperature, density and charge state 
distribution  

• This method can be applied to any nuclear beta 
decay and include relativistic, many-body screening 
and post-collisional effects 

• Our approach is more accurate than state-of-the-art 
methods 




