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Quantum technologies for quantum sensing

Aim: improved precision in the estimation of an unknown physical quantity by 

adopting quantum resources

Optical phase estimation:

Applications:

-) Gravitational wave detection

-) Imaging

-) Quantum communications

-) Biological systems measurements

Unknown parameter 𝜙 phase 

difference between

interferometer arms

E. Polino, M. Valeri, N. Spagnolo, F. Sciarrino, AVS Quantum Science 2, 024703 (2020)
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Quantum metrology

General quantum framework for estimation problems

Ultimate limits for optical phase estimation

Standard quantum limit (SQL), achievable with classical resourcesΔ𝜙 ≥
1

𝜈𝑁

Δ𝜙 ≥
1

𝜈 𝑁

Heisenberg limit (HL), achievable with quantum resources 

(entangled states, squeezed states)

Key element: preparation of the probe state
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Optical phase estimation and quantum approach

Maximally entangled states
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First unconditional violation of the standard quantum limit:

S. Slussarenko, et al., Nature Photonics 11, 700-703 (2017)

Squeezed light

Recent review:

L. Barsotti, et al., Rep. Prog. Phys. 82, 016905 (2019)

Reduced noise in one phase quadrature

Application for GW detectionHigher sensitivity than classical light
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Quantum estimation: open issues
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Can we improve convergence rate to 

SQL or HL with limited data?

Robustness to noise in the 

estimation process?

Sensitivity may

depend on the 

parameters value

Same precision is

required

1. Estimation with limited data 

2. Calibration of large scale quantum sensors

Precise calibration of the system 

response function

can we reduce the number of measurements?

can we soften the need for system modeling?

our approach: devising algorithms based on machine learning
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Adaptive estimation with limited data

-) Online approaches: feedback phase is evaluated at each run by the processing unit

-) Offline approaches: feedback phase is changed from a list of pre-calculated rules

Machine learning techniques can be employed

Single probe Measurement Feedback phase change

09/12/2021
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Adaptive estimation with limited data

Particle Swarm Optimization

Genetic Algorithm

Optimized adaptive Bayesian approach

OFFLINE APPROACHES

ONLINE APPROACHES

At each step the feedback is applied to 

minimize the variance of the posterior

distribution

maps the problem to particle evolution

inspired by the principles of natural selection

A. Lumino, et al., Phys. Rev. Applied 10, 064028 (2018)

K. Rambhatla, et al., Phys. Rev. Research 2, 033078 (2020)

A. Lumino, et al., Phys. Rev. Applied 10, 064028 (2018)

M. Valeri, at al., npj Quantum Information 6, 92 (2020)
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Extension to multiparameter estimation

Optimized adaptive Bayesian approach

Requires multiple feedback phases:

M. Valeri, et al., npj Quantum Information 6, 92 (2020)
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Calibration of quantum sensors via neural networks

New approach for calibration - machine learning for quantum sensors

Advantage: Neural networks do not rely on knowledge of the device model 

V. Cimini, et al., Phys. Rev. Lett. 123, 230502 (2019) 

V. Cimini, et al., Phys. Rev. Appl. 15, 044003 (2020)

Neural networks learns 

the model directly from 

training data

(very limited a priori 

knowledge is required)
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Concept of the approach

(1) A series of input-output data are generated from the apparatus

output probabilities

input parameters tuned by the user

Requires additional calibration of 

𝑉1, 𝑉2 ↔ (∆𝜙1, ∆𝜙2)

Calibration of quantum sensors via neural networks

09/12/2021

V. Cimini, et al., Phys. Rev. Lett. 123, 230502 (2019) 

V. Cimini, et al., Phys. Rev. Appl. 15, 044003 (2020)
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(2) The training set is used to train a neural 

network to learn the mapping between 𝑃(𝑖 → 𝑗)
and (𝑉1, 𝑉2)

No a priori knowledge on the functional form of 

the model/mapping is generally required, 

including noise

Concept of the approach

Calibration of quantum sensors via neural networks

09/12/2021

V. Cimini, et al., Phys. Rev. Lett. 123, 230502 (2019) 

V. Cimini, et al., Phys. Rev. Appl. 15, 044003 (2020)

(3) After training, the network is

capable of predicting the 

correspondence between 𝑃(𝑖 → 𝑗)
and (𝑉1, 𝑉2) on new sets of data



09/12/2021L3 – Quantum Technologies for GW detection Pagina 12

Results and Perspectives
Other results

A. Z. Goldberg, et al., Phys. Rev. A 102, 022230 (2020)

V. Cimini, et al., Phys. Rev. Applied 13, 024048 (2020)

V. Cimini, at al., arXiv:2110.02908 (2021)

ongoing and future work

ML for sensors calibrationML for adaptive estimation

Quantum phase estimation with squeezed light

Development in progress of a squeezing

apparatus

Testing of protocols for phase estimation with 

squeezed light for GW detection
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Results and Perspectives

Development of a squeezed single-mode light source

(to be completed by the end of 2022)

Laser already purchased

with ARC funding

Laser

pump, 532 nm

1064 nm

Squeezed

source

balanced

homodyne

Future extension to EPR entanglement

Testing protocols for 

phase noise reduction

in GW interferometers

Laser

pump, 532 nm

1064 nm

Squeezed

source

Squeezed

source

Testing different

schemes exploiting

entagled states

double 

balanced

homodyne

EPR entanglement

local oscillator

local oscillator

Beam

splitter
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