

First look at photon reconstruction (w/o BIB)

Massimo Casarsa

INFN-Trieste

Muon Collider Joint Tracker and Calorimeter Meeting – November 18, 2021

hadronic calorimeter

- 60 layers of 19-mm steel absorber + plastic scintillating tiles;
- 30x30 mm² cell size;

electromagnetic calorimeter

- 40 layers of 1.9-mm W absorber + silicon pad sensors;
- 5x5 mm² cell granularity;

muon detectors

- 7-barrel, 6-endcap RPC layers interleaved in the magnet's iron yoke;
- 30x30 mm² cell size.

tracking system

- Vertex Detector:
 - double-sensor layers (4 barrel cylinders and 4+4 endcap disks);
 - 25x25 µm² pixel Si sensors.
- Inner Tracker:
 - 3 barrel layers and 7+7 endcap disks;
 - 50 µm x 1 mm macropixel Si sensors.
- Outer Tracker:
 - 3 barrel layers and 4+4 endcap disks;
 - 50 µm x 10 mm microstrip Si sensors.

shielding nozzles

 Tungsten cones + borated polyethylene cladding.

- 100k single photons shot from (0, 0, 0):
 - ▶ 1 < *E*_γ < 6000 GeV;
 - ▶ 8° < θ_γ < 172°;</p>
 - ▶ 0° < φ_γ < 360°;</p>
- 20k $\mu\mu \rightarrow \gamma\gamma$ at \sqrt{s} = 3 TeV;
- 10k $\mu\mu \rightarrow \gamma$ + dark photon at \sqrt{s} = 3 TeV;
- 20k $\mu\mu \rightarrow \gamma$ + dark photon at \sqrt{s} = 10 TeV.

Graphical inspection

$E_v = 2 \text{ TeV}$

 $E_{\rm y}$ = 3 TeV

 $E_{\rm y} = 4 \, {\rm TeV}$

 $E_{\rm y} = 5 \, {\rm TeV}$

INFN Photon reconstruction

- The electromagnetic showers from high-energy photons ($E_{\gamma} \gtrsim 50$ GeV) spill into the HCAL.
- With the current default Pandora settings, high energy photons are reconstructed as two nearby clusters in the ECAL and HCAL, which are identified as a photon plus a neutron.
- There already exist dedicated algorithms in Pandora to improve the reconstruction of the high-energy photons (arXiv:1603.00013) that might be worthwhile have a look at.
- For the time being, I'm clustering the reconstructed photon and neutron using the FASTJET package (k_t algorithm with R = 0.5).

INFN Fraction of y energy in the HCAL

INFN Reconstructed photon energy

Photon energy corrections

INFN

Photon reconstruction efficiency

INFN

Muon Collider Joint Tracker and Calorimeter Meeting - November 18, 2021 10

INFN Photon energy resolution

Muon Collider Joint Tracker and Calorimeter Meeting - November 18, 2021

Photons showering in the nozzles

INFN

- It appears that with the current detector we can already reconstruct photons with high efficiency up to $E_{\gamma} = 5$ TeV.
- But the study presented here is preliminary, it's not taking into account the BIB yet, which is going to change the game.