Study of B-field strength

- Run charm analyses in different SuperB configurations:
 - Default SuperB.
 - Varying B-field strength.
 - INMAPS SVT setup, in 'Lamp' and 'Long' variants.
 - BaBar configuration (for baseline comparison).
- Figures of merit:
 - Reconstruction efficiency.
 - Resolution of $D^{(*)}$ mass, $\Delta M,\,\Delta E,\,m_{ES}.$
- Analyses used:
 - $-\,c\overline{c}
 ightarrow D^{*+}
 ightarrow D^0\pi^+_s, D^0
 ightarrow K^0_S\pi^+\pi^-.$
 - $-B^0\overline{B^0}$ events tagged by $D^{*+} \to D^0\pi^+, \, D^0 \to K\pi, K\pi\pi^0, K3\pi, \, {
 m or} \, \, K_S^0\pi\pi.$

$D^0 ightarrow K^0_S \pi^+ \pi^-$ selection (for BaBar)

- Require D^0 CM momentum greater than 2.5 GeV.
- K_S^0 candidate mass within 9 MeV of nominal value.
- Fit probability at least 0.01%.
- Slow pion must have at least one DCH hit.
- Pions from D^0 must have at least two SVT hits.
- K_S^0 decay vertex separated from D^0 vertex by 10 flight-length errors.
- K_S^0 momentum and flight angle parallel, $\cos \theta > 0.99$.
- All tracks must have at least 0.1 GeV of (lab) transverse momentum. This ensures that they make it to the tracking volume.
- For B-fields not equal to 1.5T, transverse-momentum cut is reduced proportionally; thus 0.1 GeV at B = 1.5T, 0.066 GeV at B = 1.0T. This is the source of the increased efficiency.

 p_T distributions after other cuts

University of Cincinnati

σ_t distributions

Efficiency versus decay-time resolution

Efficiency versus D^0 mass resolution (no cut on ΔM)

Efficiency versus ΔM resolution (no cut on m_{D^0})

B tagging

- \bullet Use *B*-tagging code provided by Elisa Manoni.
- Relax tag-side cuts on ΔM , ΔE and m_{D^0} .
- Select tags with charged D^* decay.
- Study effects of *B*-field strength on efficiency and resolution of (tag-side) ΔE , m_{ES} , ΔM and m_{D^*} .
- One additional configuration studied: 'Boosted BaBar', using the SuperB beam setup and BaBar detector.

Fits to ΔE

- Fit to two Gaussians (uncommon mean and sigma) and exponential.
- Figures of merit are amount of signal and RMS of two-Gaussian PDF.

ΔE results

Fits to m_{ES}

• Two Gaussians and threshold function.

m_{ES} results

Fits to ΔM

• Two Gaussians and threshold function.

ΔM results

Fits to m_{D^*}

• Two Gaussians and threshold function.

m_{D^*} results

Conclusions and TODO

- Whatever B-field is used, SuperB has better resolution and efficiency than BaBar.
- If a p_T cut is imposed (to ensure tracks reach the tracking volume) then lowering the magnetic field can increase the efficiency, at the price of some loss in resolution.
- This effect is less important when no explicit 'tracking cut' is made.
- TODO:
 - Add more charm analyses?
 - Why are INMAPS setups relatively inefficient? Can we get the resolution without the loss of efficiency?