track and B reconstrction vs DCH length

M. Rama, SuperB general meeting 14 December 2010

Outline

Goal: evaluate the impact of the drift chamber length on B reconstruction. It's an update of a <u>previous study</u> (general SuperB meeting at LNF, Dec 2009)

4 DCH configurations:

- baseline
- 20cm shorter in the forward region (FARICH case)
- 9 20cm longer in the backward region (no bwd EMC)
- ✤ 6cm longer in forward region (no fwd PID)

Simulated events:

FastSim V0.2.5 patched 4x100k single pions 4x100k $B^0 \rightarrow \pi^+\pi^-$ events 4x100k $B^0 \rightarrow D^*K$ events

machine background not included

baseline DCH

Long DCH

Short DCH

Angles useful to interpret the patterns in next slides

6

M. Rama - General SuperB meeting

14 Dec 2010

drift chamber hits as a function of the polar angle

M. Rama - General SuperB meeting

14 Dec 2010

single particles: p resolution at θ =23°

Note: the stat errors are smaller than the squares size

p resolution in Short DCH worsens by ~20% in fwd region (for θ =23°) negligible effect in Long DCH vs. Masked DCH

single particles: p resolution at θ =150°

Note: the stat errors are smaller than the squares size

p resolution in Long DCH improves by ~30% in bwd region (for θ =150°)

Effect on $B \rightarrow \pi^+ \pi^-$ reconstruction

high momentum range complementary to $B^0 \rightarrow D^*K^+$, $D^* \rightarrow D^0\pi^-$, $D^0 \rightarrow K\pi$

DeltaE

Reconstruction efficiency of $B \rightarrow \pi^+ \pi^-$

DCH configuration	reco. efficiency [%] (∆E <100 MeV)
baseline	82.2 ± 0.1
20cm shorter in fwd region (FARICH)	81.2 ± 0.1
20cm longer in bwd region (no bwd EMC)	82.6 ± 0.1
6cm longer in fwd region (no fwd PID)	82.1 ± 0.1

DCH configuration	reco. efficiency [%] (∆E <60 MeV ~2.5σ)
baseline	77.6 ± 0.1
20cm shorter in fwd region (FARICH)	76.7 ± 0.1
20cm longer in bwd region (no bwd EMC)	78.1 ± 0.1
6cm longer in fwd region (no fwd PID)	77.6 ± 0.1

Check

Are the numbers in the previous slide expected?

$$\Delta E = E_B - E_{beam} = \sqrt{m_{\pi 1}^2 + p_1^2} + \sqrt{m_{\pi 2}^2 + p_2^2} - E_{beam} \quad \text{in CM frame.}$$

$$\sigma(\Delta E)^2 = \sum_{i=1,2} p_i^2 / (m_{\pi,i}^2 + p_i^2) \sigma(p_i)^2$$
If $\sigma(\mathbf{p}_1) \rightarrow 1.2 \sigma(\mathbf{p}_1) \quad \text{then on average } \sigma(\Delta E) \rightarrow 1.10\sigma(\Delta E) \quad \text{[for Bs with one track in the forward region]}$

Since the fraction of reco. Bs with 1 track in the fwd region is ~10%: $\sigma(\Delta E) \rightarrow \sim 1.01 \sigma(\Delta E)$

Assuming a Gaussian distribution for ΔE , a $\pm 2.5\sigma$ window correspond to a $2.5/1.01=2.475\sigma$ cut. The efficiency loss in this case would be ~0.1%. Due to the tails the loss is larger, but it remains $\leq 1\%$. **Consistent with what observed.**

Effect on $B^0 \rightarrow D^{*-}K^+$ reconstruction

 $B^0 \rightarrow D^{*-}K^+$, $D^{*-} \rightarrow D^0\pi^-$, $D^0 \rightarrow K\pi$

M. Rama - General SuperB meeting

no selection cuts applied, just MC truth matching

Reconstruction efficiency of $B^0 \rightarrow D^{*-}K^+$

DCH configuration	reco. efficiency [%] (∆E <100 MeV)
baseline	70.9 ± 0.1
20cm shorter in fwd region (FARICH)	70.2 ± 0.1
20cm longer in bwd region (no bwd EMC)	70.9 ± 0.1
6cm longer in fwd region (no fwd PID)	71.2 ± 0.1

DCH configuration	reco. efficiency [%] (∆E <50 MeV ~2.5σ)
baseline	65.5 ± 0.2
20cm shorter in fwd region (FARICH)	64.8 ± 0.2
20cm longer in bwd region (no bwd EMC)	65.9 ± 0.2
6cm longer in fwd region (no fwd PID)	65.9 ± 0.2

Conclusions

These results confirm the previous study

- significant improvement of p resolution in bwd region with long DCH (no bwd EMC)
- significant worsening of p resolution in fwd region with short DCH (FARICH)

BUT

▶ the overall impact on B reconstruction is small (modes considered: $B \rightarrow \pi\pi$, $B \rightarrow D^*K$). The variation of the selection efficiency for a 2.5 σ ΔE selection window is ≤1%.

backup

tracks from $B \rightarrow \pi \pi$: OCH dE/dx) vs polar angle σ σ(DCH dE/dx) vs theta σ(DCH dE/dx) vs theta (profile) 0.35^{×10} ×10⁻³ 0.34 backward region 0.32 0.3 0.3 0.25 0.28 zoom 0.2 0.26 Unmasked 0.24 0.15 Masked 0.22 Long 0.1 0.2 Short 0.18 0.05 zoom 0.16 0 120 130 150 160 170 180 140 20 40 60 80 120 160 180 100 140 σ(DCH dE/dx) vs theta 0.3^{×10}

Note: the spread of the dE/dx measurement of the single hit is parameterized as:

$$\sigma(dE/dx) = a_1(dE/dx)^{a_2}dl^{a_3} \qquad \begin{array}{l} a_2 = 1\\ a_3 = -0.5 \end{array}$$

/K

$$a_1$$
 (and also a2) is tuned to resemble the dE/dx π /separation measured in Babar data (sl. 9)

32

28

0.28

0.26

0.24

0.22

0.2

0.18

0.16 12 forward region

tracks from $B \rightarrow \pi \pi$: DCH dE/dx K- π separation vs theta

single particles: K/π separation vs p at $\theta=23^\circ$

see drawings in sl. 10-11

between Short and Masked: 0.16σ difference @2.5GeV 0.21σ difference @0.6 GeV

between Long and Masked: ~0.04σ difference @2.5GeV ~0.07σ difference @0.6GeV

14 Dec 2010

single particles: K/π separation vs p at $\theta=150^{\circ}$

see drawings in sl. 10-11

Summary

Preliminary study of tracking and $(dE/dx)_{DCH}$ performance vs DCH length

tracking

- significant improvement of momentum resolution in bwd region with Long DCH (no bwd EMC)
- significant worsening of momentum resolution in fwd region with Short DCH (FARICH)

BUT

▶ the fraction of tracks going in fwd and bwd region is quite small (modes considered: $B \rightarrow \pi \pi$, $B \rightarrow D^*K$) → Impact on B reconstruction (reco. efficiency, ΔE resolution) is very small

dE/dx (tuned on BaBar)

- moderate improvement of K/ π separation in bwd region with Long DCH (~0.4 σ @2.5GeV or 0.6GeV)
- moderate worsening of K/ π separation in fwd region with FARICH (~0.2 σ @2.5GeV or 0.6GeV)
- negligible improvement of K/ π separation in fwd region with Long DCH (no TOF)
- Eventually it is the combined dE/dx+other-PID-devices performance that must be compared

dE/dx BaBar vs fastsim

muons→protons: reasonable electrons: need work