

B→K*vv vs HAD tag: impact of bwd EMC and fwd PID

<u>Elisa Manoni</u> INFN Sez. Perugia

DGWG session, Caltech general Meeting, December 14, 2010

elisa manoni

infn perugia

Outline

- ^{*} DG configurations and samples from September production
- * impact of fwd PID in Breco and Breco+Bsig selection efficiencies
- * impact of bwd EMC used as a veto
- * impact of material in front of Fwd EMC

Detector geometries

* DG_4 : SVT_L0 + fwd TOF+ bwd EMC

DGWG session

INFN

- offline can study: impact of fwd PID, impact of bwd EMC
- * DG_4a : as DG_4 but TOF made if Air (0-thickness TOF)
 - comparing with DG_4 , study impact of TOF material in front of the EMC

INFN

SuperB

Sample used

* 2010_September production, FastSim release V0.2.5, revs 307 and 311

Sample	Bkg conditions	$N_{events}^{analyzed}(10^6)$			
DG 4					
$B^0 \rightarrow K^{*0} \nu \bar{\nu}$ vs generic B^0	allbkgs	3.06			
$B^+ \to K^{*+} \nu \bar{\nu}$ vs generic B^-	allbkgs	3.33			
B^0 hadronic cocktail vs generic B^0	allbkgs	150.96			
B^+ hadronic cocktail vs generic B^-	allbkgs	189.28			
$B^0 \rightarrow K^{*0} \nu \bar{\nu}$ vs generic B^0	nopairs	2.97			
$B^+ \to K^{*+} \nu \bar{\nu}$ vs generic B^-	nopairs	3.15			
B^0 hadronic cocktail vs generic B^0	nopairs	377.20			
B^+ hadronic cocktail v s generic B^-	nopairs	400.00			
DG 4a					
$B^0 \rightarrow K^{*0} \nu \bar{\nu}$ vs generic B^0	allbkgs	3.15			
$B^+ \to K^{*+} \nu \bar{\nu}$ vs generic B^-	allbkgs	3.12			
$B^0 \rightarrow K^{*0} \nu \bar{\nu}$ vs generic B^0	nopairs	3.03			
$B^+ \to K^{*+} \nu \bar{\nu}$ vs generic B^-	nopairs	3.00			
B^0 hadronic cocktail vs generic B^0	nopairs	376.24			
B^+ hadronic cocktail vs generic B^-	nopairs	325.28			

elisa manoni

infn perugia

4

Analysis strategy

Baseline analysis

- DG_4_allbkgs with Fwd TOF on and Bwd EMC off
- Kaons form Bsig and Breco: likelihood based selectors TightLHKaonfTOFSelection
- * impact of Fwd TOF:
 - DG_4_allbkgs with Fwd TOF off and Bwd EMC off
 - Kaons form Bsig and Breco: likelihood based selectors TightLHKaonSelection
- * impact of **Bwd EMC**:
 - DG_4_allbkgs with Fwd TOF switched on and Bwd EMC switched on
 - cut on Eextra deposited in bwd EMC (+ usual cut on Eextra from Barrel+Fwd)

$$\frac{\delta\varepsilon}{\varepsilon} = \frac{\varepsilon_{xxx,on} - \varepsilon_{xxx,off}}{\varepsilon_{xxx,off}}$$

- * impact of material in front of Fwd EMC
 - DG_4a_nopairs with Fwd TOF switched on and Bwd EMC switched off
 - evaluate π^0 mass and γ energy resolutions and compare with DG_4

elisa manoni

Impact of Fwd PID DG_4, cocktail + signal (all backgrounds)

6

December 14, 2010

Remarks on $K\pi^0$ vs $K\pi$

* Signal side Kaon momentum, before PID requirements

DGWG session

INFN

Κπ				
	DCH	DCH+TOF		
fwd sig K	$(6.0 \pm 0.6)\%$	$(6.0 \pm 0.6)\%$		
fwd sig K , PID OK	$(35 \pm 5)\%$	$(60 \pm 5)\%$		
$K\pi^0$				
	DCH	DCH+TOF		
fwd sig K	$(7.6 \pm 1.3)\%$	$(7.6 \pm 1.3)\%$		
fwd sig K , PID OK	$(13 \pm 6)\%$	$(66 \pm 8)\%$		

December 14, 2010

Remarks on $K_s \pi$

- After Breco sel. + Bsig mode reconstr. :
 - Kpi: nTOF+DCH nDCH = 45
 - Ksp: nTOF+DCH nDCH = 10
- * After Breco+Bsig sel. :

DGWG session

- Kpi: nTOF+DCH nDCH = 19
 (42% of gained events falls in the signla box)
- Ksp: nTOF+DCH nDCH = 7

(70% of "gained" events falls in the signal box)

- → most of the Kspi events gained with TOF (i.e. higher Breco reconstruction) survive the full selection
- → full selection efficiency gain higher than Breco efficiency gain

Impact of Bwd EMC DG_4 cocktail + signal (no pairs)

INFN

Eextra_bwd cut: optimization

^k Strategy:

INFN

- scan the region Eextra_Bwd \in [0.05,0.5] GeV and compute FOM = S/sqrt(B)
- optimal cut \leftrightarrow maximum FOM

INFN

Superi

Eextra_bwd cut: results

* EextraBwd < 0.05 GeV:

$B^0 o K^{*0} u ar{ u}$						
Sample	$N_{\rm sel}$	$arepsilon_{ m tpt}$	$N_{\rm sel,Bwd}$	$\varepsilon_{ m tot,Bwd}$	$\delta \varepsilon / \varepsilon$	
$B^0 \to K^{*0} \nu \bar{\nu}$	727	$(24.8 \pm 0.9) \times 10^{-5}$	719	$(24.2 \pm 0.9) \times 10^{-5}$	$(2.4\pm)\%$	
B^0 had cocktail	76	$(20\pm2) imes10^{-8}$	60	$(16\pm2) imes10^{-8}$	21%	
S/\sqrt{B}		83 ± 7		93 ± 9		
$B^+ \to K^{*+}(K_z \pi^+) \nu \bar{\nu}$						
Sample	$N_{\rm sel}$	$\varepsilon_{ m tot}$	$N_{ m sel,Bwd}$	$\varepsilon_{ m tot,Bwd}$	$\delta \varepsilon / \varepsilon$	
$B^+ \to K^{*+} \nu \bar{\nu}$	223	$(7.1 \pm 0.5) imes 10^{-5}$	217	$(7.0 \pm 0.5) imes 10^{-5}$	1.4%	
B^+ had cocktail	48	$(12.0 \pm 1.7) \times 10^{-8}$	40	$(10.0 \pm 1.7) \times 10^{-8}$	17%	
S/\sqrt{B}		32 ± 4		35 ± 5		

$$\delta\left(\frac{S}{\sqrt{(B)}}\right) = \frac{\left(\frac{S}{\sqrt{(B)}}\right)_{bwd} - \left(\frac{S}{\sqrt{(B)}}\right)_{nobwd}}{\left(\frac{S}{\sqrt{(B)}}\right)_{nobwd}} = \bigvee \begin{array}{c} K\pi : (10 \pm 3)\% \\ K_s\pi : (8 \pm 3)\% \end{array}$$

elisa manoni

Impact of material in front of fwd EMC DG_4a cocktail + signal

Superi

π^0 and γ reconstruction

	DG 4	DG 4a
brr π^0 reco eff	$58.76 \pm 0.01\%$	$58.73 \pm 0.01\%$
brr π^0 truth eff	$25.40 \pm 0.01\%$	$25.45 \pm 0.01\%$
fwd π^0 reco eff	$21.81 \pm 0.08\%$	$22.17 \pm 0.08\%$
fwd π^0 truth eff	$36.4\pm0.2\%$	$43.8 \pm 0.2\%$
brr γ reco eff	$4.8583 \pm 0.0006\%$	$4.8159 \pm 0.0006\%$
brr γ truth eff	$5.932 \pm 0.003\%$	$5.950 \pm 0.003\%$
fwd γ reco eff	$9.231 \pm 0.004\%$	$9.213 \pm 0.004\%$
fwd γ truth eff	$7.14\pm0.01\%$	$7.20 \pm 0.01\%$

* more on π^0 mass resolution and gamma energy resolution @ tomorrow EMC session

INFN

Super

Impact on physics results (I)

10

0.2

0.4

Eextra barrel + forward distributions, before Eextra cut

minimum gamma energy = 30 MeVDG_4 signal MC DG_4a signal MC

0.6

0.8

elisa manoni

1 1.2 E^{lab,BrrFwd} (GeV)

1.2

December 14, 2010

Impact on physics results (II)

DG_4 signal MC DG_4a signal MC

INFN

Superi

* cut flow efficiency: DG_4 and DG_4a consistent within statistical error

Conclusion

DG studies performed using September_2010 Production

* FWD PID:

- gain on Breco reconstruction around 3%
- gain when applying PID requirements on the signal side around 2-4%
- total gain is expected to be 3% + 2-4% but selection cuts reduce the overall gain (some sanity check needed)

* BWD EMC

- preliminary studies indicates a 10% enhancement in the FOM when applying the Eextra_bwd cut

* EFFECT OF MATERIAL IN FRONT OF FWD EMC

- 1.5% loss in π^0 efficiency reconstruction, gamma reconstruction efficiency almost unchanged
- physics performances doesn't seem to change on signal MC
- more will be discussed at tomorrow EMC session

elisa manoni

- * limit the number of reconstructed Breco channels
 - reconstruct only modes with purity >50%
 - generate ad-hoc BB cocktail sample instead of generic
- * Available Bsig modes

- Κ*νν

- Kvv, $K_s(\pi\pi)vv$
- τv , with $\tau \rightarrow evv$, μvv , πv , $\rho(\pi \pi^0)v$, $a_1(\rho \pi)v$

elisa manoni