DGWG parallel session, December 15th 2010

Fwd-PID and Bwd-EMC Studies SL recoil analyses

Alejandro Pérez
INFN – Sezione di Pisa
A. Stocchi, N. Arnaud, L. Burmistrov
LAL – Université Paris XI

Outline

- Detector Geometries
- Samples used
- Fwd-PID studies strategy
- Bwd-EMC studies strategy
- Results on boost reduction
- Results on Fwd-PID Studies
- Results on Bwd-EMC Studies
- Summary and outlook

Detector Geometries

- BaBar ($\beta \gamma = 0.56$) (**DG_BaBar**)
- Baseline configuration: BaBar with reduced boost ($\beta \gamma = 0.24$)
- Generated geometries:
 - Baseline + Bwd-EMC + Fwd-PID (quartz) (DG_4)
 - Baseline + Bwd-EMC + Fwd-PID (air) (DG_4a)

Summer 2010 Production

Signal samples:

- → B⁺→K⁺νν (DG_BaBar/DG_4/DG_4a): 3.00/4.02/3.03 M
- → B⁰→K⁰vv (DG_BaBar/DG_4/DG_4a): 3.00/3.00/3.00 M
- → B⁰→K*⁰vv (DG_BaBar/DG_4/DG_4a): 3.00/3.00/2.94 M
- → B⁺→K*⁺vv (DG BaBar/DG 4/DG 4a): 3.00/2.97/3.00 M
- → B⁺ $\to \tau^+ \nu$ (DG_BaBar/DG_4/DG_4a): 3.00/3.00/3.00 M

Background Samples:

- → B⁺B⁻ SL-cocktail (DG_BaBar/DG_4/DG_4a): 89.30/340.72/344.32 M
- → B⁰B⁰ SL-cocktail (DG_BaBar/DG_4/DG_4a): 71.90/284.00/284.56 M
- All samples generated with bkg mixing NoPairs (V0.2.5 Rev 307)
- Checked that DG_4 and DG_4a are equivalent samples (variables distributions and efficiencies)
- DG_4 and DG_4a are merged together to perform the DGWG studies

Fwd-PID Studies Strategy

- Latest studies from full simulation showed that fTOF material has negligible effect on Fwd-EMC
- Generate two samples to estimate Fwd-PID impact: DG_4 and DG_4a
- Compare DG_4 and DG_4a to estimate the effect of the fTOF material Result: effect is negligible ⇒ DG_4 and DG_4a samples equivalent
- Store at the n-tuples two selectors for the same particle type and tightness (i.e.)
 - → KaonLHTightSelector (no use of timing information from fTOF)
 - → KaonLHTight_fTOFSelector (use of timing information from fTOF when available)
- Merge DG_4 and DG_4a samples (DG_4+DG_4a)
- Use this sample to estimate fTOF impact:
 - fTOF out place: use KaonLHTightSelector
 - fTOF in place: use KaonLHTight fTOFSelector
- Gain due to fTOF will be the increase in efficiency

PID requirements

- Tag-Side:
 - → Use KaonLHTight
- Signal-Side:
 - → Use KaonLHTight

Bwd-EMC Studies Strategy: Veto device

Boost Reduction Results

Boost reduction results

Boost reduction results

- Boost reduction also modifies the Missing momentum variables
 - No change for signal
 - Bkg distributions get more discriminant (get shifted to zero)

Boost reduction results: B⁺→K⁺vv

Signal: ~ -8.0 %

B⁺**B**⁻: ~ -60.0 %

B 0 **B** 0 : ~ -65.0 %

Boost reduction results: B⁰→K⁰vv

Cut-flow absolute efficiencies (RelChange)

Signal: ~ +15.0 %

B⁺**B**⁻: ~ -30.0 %

 B^0B^0 : ~ -28.0 %

Cut-flow absolute efficiencies (RelChange)

Cut-flow absolute efficiencies (RelChange)

Boost reduction results: B⁺→K*+vv

Boost reduction results: B⁰→K*0vv

Signal: ~ +12.0 %

B $^{+}$ **B** $^{-}$: ~ -28.0 %

B 0 **B** 0 : ~ -40.0 %

Boost reduction results: B⁺→τ⁺ν

Results on Fwd-PID Studies

- Events in the Fwd region (15-25 degrees) are 5% of the total sample if cos(θ) (CM) is flat
- f-TOF seems to recover the events in the Fwd
- Gain from fTOF not expected to be higher than 5% for each identified kaon

- fTOF in: number of events in the Fwd gets doubled
 - \Rightarrow gain on tag-side side ~2.5%

- Different gain is obtained on the signal-side due to the different Kaon momentum spectrum (harder w.r.t tag-side)
 - ⇒ gain in signal-signal side ~2%

Relative
efficiency
Gain

Skiming TagSigRec Cut CosBYCut CosBYCut

- Sig-side: $2.1 \pm 0.1\%$

■ B⁺B⁻: - Tag-side: 2.0 %

- Sig-side: $3.3 \pm 2.1\%$

B⁰**B**⁰: - Tag-side: 2.0 %

- Sig-side: $3.5 \pm 4.0\%$

Cut-flow absolute efficiencies (RelChange)

Signal: - Tag-side: 1.8 %

- Sig-side: $2.1 \pm 0.1\%$

B⁺**B**⁻: - Tag-side: 1.3 %

- Sig-side: $0.2 \pm 0.1\%$

B⁰**B**⁰: - Tag-side: 1.5 %

- Sig-side: $0.2 \pm 0.1\%$

Cut-flow absolute efficiencies (RelChange)

Cut-flow absolute efficiencies (RelChange)

- Sig-side: $2.6 \pm 0.1\%$

- Tag-side: 2.3 %

- Sig-side: $2.1 \pm 0.1\%$

- Tag-side: 2.0 %

- Sig-side: $0.0 \pm 0.1\%$

All K** modes

Signal: - Tag-side: 2.3 %

- Sig-side: $1.4 \pm 0.3\%$

B⁺**B**⁻: - Tag-side: 2.1 %

- Sig-side: $0.2 \pm 0.2\%$

■ B⁰B⁰: - Tag-side: 2.0 %

- Sig-side: $0.2 \pm 0.1\%$

Cut-flow absolute efficiencies (All) (RelChange)

EmissPmissCMCut

CosthMissCM

CosDIT SigCut

BVtxProb MCut mKstCut mKsCut

TagSigRec DMassCut

EmisspmissCMCut

mKsCut

BVtxProb MCut MKstCut

CosDIT SigCut

CosBYCut

DM_{assCut}

Fwd-PID studies: B→τ⁺ν

- Sig-side: $0.1 \pm 0.02\%$

- Tag-side: 2.1 %

- Sig-side: $0.04 \pm 0.02\%$

- Tag-side: 2.1 %

- Sig-side: $-0.4 \pm 0.1\%$

Cut-flow absolute efficiencies (τ⁺ν (all)) (RelChange)

Results on Bwd-EMC Studies

Bwd-EMC studies: B→Kvv

Bwd-EMC studies: B→Kvv

E_{extra}(Bwd-EMC) (GeV)

Bwd-EMC studies: B→K*vv

Bwd-EMC studies: B→K*vv

Bwd-EMC studies: B→τ⁺ν

Bwd-EMC studies: B→τ⁺ν

Expected SuperB Sensitivities

Expected sensitivities: B→K(*)vv

b→svv model independent phenomenology:

(W. Altmannshofer et al. TUM-HEP-709-09)

- BR(B \to Kνν) = (4.5±0.7)×10⁻⁶ (1-2η)ε²
- BR(B \rightarrow K*vv) = (6.8±1.1)×10⁻⁶ (1+1.31 η) ϵ^2
- $F_{l}(B \rightarrow K^*vv) = (0.54 \pm 0.01) (1 + 2\eta)/(1 + 1.31\eta)$

$$\frac{d\Gamma}{d\cos\theta} \propto \frac{3}{4}(1 - \langle F_L \rangle)\sin^2\theta + \frac{3}{2} \langle F_L \rangle \cos^2\theta$$

 θ (helicity) = angle between:

- K* direction in B rest frame
- K direction in K* rest frame

Expected sensitivities: B→τ⁺ν

Assumptions:

- statistical error scales with luminosity
- Main systematic error (E_{extra} bkg PDF)
 mainly due to MC statistics,
 - ⇒ assume it scales with luminosity
- Syst. on tag/signal efficiencies and BB counting (7%⊕5%⊕1.1% = 8.7%) seems to be irreducible. Suppose that it can be reduced by 50%

Assumptions:

$$Br(B \to l \nu) = \frac{G_F^2 m_B}{8 \pi} m_l^2 \left| 1 - \frac{m_l^2}{m_B^2} \right|^2 f_B^2 |V_{ub}|^2 \tau_B$$

- BR_{exp} central value is SM value
- $BR_{SM} = (1.20\pm0.20)\times10^{-4}$ uncertainties mainly due to

$$f_{_{B}}$$
 = 190 ± 13 MeV, $V_{_{Ub}}$ = (4.32 ± 0.16 ± 0.29)×10⁻³

- $f_{_{\!R}}$ error (lattice QCD): 1.0-1.5% for SuperB
- V_{ub} : 1st error is statistical (scales with lumi) 2nd error is systematics (irreducible)

38

Summary and outlook

Boost reduction:

- Signal: efficiency decreases/increases from -8% to 20% depending on the mode
- Bkg: efficiency get always reduced from -60% to -20% depending on the mode

Fwd-PID studies:

- Gain from 2.0 to 2.5% per identified kaon (depends on momentum spectrum)
- Signal samples with (without) a charge kaon on signal-side get an overall relative increase on efficiency of ~4.5% (~2.5%)
- Background samples efficiency increases due to better tag-side efficiency, not significant increase on signal-side efficiency (error bars still big)

Bwd-EMC studies:

- All analyses give similar performances for this device
- It seems that we can reduce the two main background samples by about ~10% with negligible reduction on signal efficiency using $E\gamma$ (min) > 30MeV
- Many thanks to the production team who provided the samples needed for these studies

---Full Sim ----Fast Sim

Variable: p*(muon)

Alejandro Perez, DGWG parallel session Dec. 15th 2010