Summary plenary session, Dec. 17th 2010

MDI Summary

Alejandro Pérez INFN – Sezione di Pisa

For the MDI Group

Istituto Nazionale di Fisica Nucleare

What is new?

Model updates:

- New Geometry around IP
- Beam pipes extensions up to 10m
- New final focus magnetic modeling (V12 SF10)
- Geant4 migration from version $4.9.2 \rightarrow 4.9.3$
- Test of the correctness of the model
 - Final focus magnetic model validation
 - Beam pipe geometry validation
- Full simulation new test production
 - SVT: occupancy
 - > 2Photon
 - Rad. Bhabha
 - EMC: hits and energy deposits (Rad Bhabha)
 - IFR: Neutron Equivalent 1MeV energy (Rad Bhabha)

New Geometry around IP R. Cenci

- Beryllium beam pipe with cooling and support structure
- Steel pipes with bellows and flanges up to ±86cm

New Geometry around IP R. Cenci

- Pinwheeled L0 with cooling, HDIs and support
- Tungsten shield closest to the IP (beaks) has been removed to allocate cooling and support structure
 - Pinwheeled L0
 - Min radius 13 mm, max 18 mm

Filippo B. design

Beam Geometry Extension A. Pérez

- Validation tool: Helpful to sketch the geometry and to spot bugs
- Beam pipes tilt is higher (35mrad) than 30mrad
- Can check the beam pipes extension up to ±10m from IP

Final Focus Validation

A. Pérez

- Use final focus v12 sf10 layout
- Generate particles (10k) with the beam parameters (HER and LER) at the IP:
 - All particles are generated at Z = 0 and at the nominal beam energy

_parameter	HER (e⁺)	LER (e ⁻)
Energy	6.69 GeV	4.18 GeV
$\sigma_{_{\!$	7.3x10 ⁻³ mm	8.7x10 ⁻³ mm
$oldsymbol{eta_{x}}$	26.0 mm	32.0 mm
$\sigma_{_{_{ m Y}}}$	36.0x10 ⁻⁶ mm	35.0x10 ⁻⁶ mm
$oldsymbol{eta}_{_{\mathbf{Y}}}$	253.0x10 ⁻³ mm	205.0x10 ⁻³ mm
$\alpha_{_{\mathrm{Z}}}$	-30mrad	π +30mrad

- Feed this particles into Bruno which transport them into the final focus field
- Builds special scoring geometry to study beam optics
- Goal: comparison with design values

Final Focus Modeling

A. Pérez

SVT: 2photon background R. Cenci

- Confirmed that lower cut on pT for 2photon has no effect on L0 rate
- Rate is slightly decreased but still higher than requested, 56 MHz/cm2 (was 64)
- Shape is the same

PixelsON distribution vs Z on Svt La

- Sample equivalent to 260 μs (~50k bunch crossings)
- New macro to produce those events, not yet embedded in Bruno (A. Pérez)

SVT: Radiative Bhabha background R. Cenci

- L0 rate decreased as well, 4.6 MHz/cm2 (was 5.4)
- Shape again is the same

 Sample equivalent to 2.4ms (~1M bunch crossings)

New Geometry

Note: longitudinal B field off

EMC: Radiative Bhabha background S. Germani

Energy deposit per crystal per bunch crossing is higher in Winter production

EMC hits:

- Different behaviour at low multiplicity
- Winter production factor of ~2 higher multiplicity
- **Neutron flux:** Winter production has
 - much higher low energy neutrons flux
 - Lower neutrons flux at high energy
 - A couple of features to be still understood

IFR: Radiative Bhabha background M. Munerato

Future Plans

- Some differences between Winter and February production. Changes
 - New Geant4 version 4.9.2 → 4.9.3
 - New Final focus configuration
 - New pipes geometries (near IP and extension up to ±10m)
- Some checks to understand the differences
 - Run old geometry with new Geant4 version To be completed by
 - Run new geometry with old Geant4 version end of January 2011
- Detector groups will report on this test production findings \(\rightarrow \frac{-2 \text{ weeks}}{\text{February 2011}} \)
- If we are lucky (reasonable discrepancies among Geant4 versions)
 - Correct the little bug in pipes geometry
 - Instrument the boundary of Bwd-EMC
 - Optical model of PID (Cerencov light production and propagation)
- Future production (with new configuration)
 - 2photon background (500k bunch crossings)
 - Radiative Bhabha (1M bunch crossings)
- Touschek and beam gas interaction (sample size to be decided) Alejandro Perez, MDI Summary, Dec. 17th 2010

~2 or 3 weeks

Summary

- A more realistic modeling of IR geometry and beam pipes has been implemented
- New final focus layout is now implemented
- A validation machinery for the final focus magnetic layout and pipes geometries is now available
- Some differences between Winter and February production. Work in progress to understand them.

